Chapter 10

Laboratory Methods for
Experimental Sonification

Till Bovermann, Julian Rohrhuber and Alberto de Campo

This chapter elaborates on sonification as an experimental method. It is based on the premise
that there is no such thing as unconditional insight, no isolated discovery or invention; all
research depends on methods. The understanding of their correct functioning depends on
the context. Sonification as a relatively new ensemble of methods therefore requires the
re-thinking and re-learning of commonly embraced understandings; a process that requires
much experimentation.

Whoever has tried to understand something through sound knows that it opens up a maze
full of both happy and unhappy surprises. For navigating this labyrinth, it is not sufficient
to ask for the most effective tools to process data and output appropriate sounds through
loudspeakers. Rather, sonification methods need to incrementally merge into the specific
cultures of research, including learning, drafting, handling of complexity, and last but not
least the communication within and between multiple communities. Sonification can be a
great complement for creating multimodal approaches to interactive representation of data,
models and processes, especially in contexts where phenomena are at stake that unfold in
time, and where observation of parallel streams of events is desirable. The place where
such a convergence may be found may be called a sonification laboratory, and this chapter
discusses some aspects of its workings.

To begin with, what are the general requirements of such a working environment? A sonifi-
cation laboratory must be flexible enough to allow for the development of new experimental
methods for understanding phenomena through sound. It also must be a point of convergence
between different methods, mindsets, and problem domains. Fortunately, today the core
of such a laboratory is a computer, and in most cases its ‘experimental equipment’ is not
hardware to be delivered by heavy duty vehicles, but is software which can be downloaded
from online resources. This is convenient and flexible, but also a burden. It means that the
division of labor between the development of tools, experiments, and theory cannot be taken
for granted, and a given sonification toolset cannot be ‘applied” without further knowledge;
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within research, there is no such thing as ‘applied sonification’, as opposed to ‘theoretical
sonification’. Participants in sonification projects need to acquire some familiarity with both
the relevant discipline and the methods of auditory display. Only once a suitable solution is
found and has settled into regular usage, these complications disappear into the background,
like the medical display of a patient’s healthy pulse. Before this moment, both method and
knowledge depend on each other like the proverbial chicken and egg. Because programming
is an essential, but also sometimes intractable, part of developing sonifications, this chapter is
dedicated to the software development aspect of sonification laboratory work. It begins with
an indication of some common pitfalls and misconceptions. A number of sonification toolkits
are discussed, together with music programming environments which can be useful for
sonification research. The basics of programming are introduced with one such programming
language, SuperCollider. Some basic sonification design issues are discussed in more detail,
namely the relationship between time, order and sequence, and that between mapping and
perception. Finally, four more complex cases of sonification designs are shown — vector
spaces, trees, graphs, and algorithms — which may be helpful in the development process.

In order to allow both demonstration and discussion of complex and interesting cases, rather
than comparing trivial examples between platforms, the examples are provided in a single
computer language. In text-based languages, the program code also serves as precise readable
documentation of the algorithms and the intentions behind them [17]. The examples given
can therefore be implemented in other languages.

10.1 Programming as an interface between theory and
laboratory practice

There is general agreement in the sonification community that the development of sonification
methods requires the crossing of disciplinary boundaries. Just as the appropriate interpretation
of visualized data requires training and theoretical background about the research questions
under consideration, so does the interpretation of an auditory display. There are very few
cases where sonification can just be applied as a standard tool without adaptation and
understanding of its inner workings.

More knowledge, however, is required for productive work. This knowledge forms an
intermediate stage, combining know-how and know-why. As laboratory studies have shown,
the calibration and development of new means of display take up by far the most work in
scientific research [24]. Both for arts and sciences, the conceptual re-thinking of methods
and procedures is a constant activity. A computer language geared towards sound synthesis
is a perfect medium for this kind of experimentation, as it can span the full scope from the
development from first experiments to deeper investigations. It allows us to understand the
non-trivial translations between data, theory, and perception, and permits a wider epistemic
context (such as psychoacoustics, signal processing, and aesthetics) to be taken into account.
Moreover, programming languages hold such knowledge in an operative form.

As algorithms are designed to specify processes, they dwell at the intersection between
laboratory equipment and theory, as boundary objects that allow experimentation with
different representation strategies. Some of what needs to be known in order to actively
engage in the development and application of sonification methods is discussed in the
subsequent sections in the form of generalized case studies.
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10.1.1 Pitfalls and misconceptions

For clarification, this section discusses some common pitfalls and misconceptions miscon-
ceptions that tend to surface in a sonification laboratory environment. Each section title
describes a misunderstanding, which is then disentangled in the section which follows:

»Data is an immediate given« Today, measured and digitized data appears as one of the
rocks upon which science is built, both for its abundance and its apparent solidity. A
working scientist will however tend to emphasize the challenge of finding appropriate
data material, and will, wherever required, doubt its relevance. In sonification, one
of the clearest indications of the tentative character of data is the amount of working
hours that goes into reading the file formats in which the data is encoded, and finding
appropriate representations for them, i.e., data structures that make the data accessible
in meaningful ways. In order to do this, a working understanding of the domain is
indispensable.

»Sonification can only be applied to data.« Often sonification is treated as if it were
a method applied to data only. However, sonification is just as much relevant for the
understanding of processes and their changing inner state, models of such processes,
and algorithms in general. Sonification may help to perceptualize changes of states as
well as unknowns and background assumptions. Using the terminology by the German
historian of science Rheinberger [24], we can say that it is the distinction between
technical things (those effects and facts which we know about and which form the
methodological background of the investigation) and epistemic things (those things
which are the partly unknown objects of investigation) that makes up the essence
of any research. In the course of experimentation, as we clarify the initially fuzzy
understanding of what the object of interest is exactly the notion of what does or does
not belong to the object to be sonified can change dramatically. To merely "apply
sonification to data" without taking into account what it represents would mean to
assume this process to be completed already. Thus, many other sources than the
common static numerical data can be interesting objects for sonification research.

»Sonification provides intuitive and direct access.« To understand something not
yet known requires bringing the right aspects to attention: theoretical or formal
reasoning, experimental work, informal conversation, and methods of display, such
as diagrams, photographic traces, or sonification. It is very common to assume that
acoustic or visual displays provide us somehow with more immediate or intuitive
access to the object of research. This is a common pitfall: every sonification (just
like an image) may be read in very different ways, requires acquaintance with both
the represented domain and its representation conventions, and implies theoretical
assumptions in all fields involved (i.e., the research domain, acoustics, sonification,
interaction design, and computer science). This pitfall can be avoided by not taking
acoustic insight for granted. The sonification laboratory needs to allow us to gradually
learn to listen for specific aspects of the sound and to judge them in relation to their
origin together with the sonification method. In such a process, intuition changes, and
understanding of the data under exploration is gained indirectly.

»Data "time" and sonification time are the same.« Deciding which sound events
of a sonification happen close together in time is the most fundamental design decision:
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temporal proximity is the strongest cue for perceptual grouping (see section 10.4.1).
By sticking to a seemingly compelling order (data time must be mapped to sonification
time), one loses the heuristic flexibility of really experimenting with orderings which
may seem more far-fetched, but may actually reveal unexpected phenomena. It can
be helpful to make the difference between sonification time and domain time explicit;
one way to do this formally is to use a sonification variable ¢ as opposed to t. For a
discussion of sonification variables, see section 10.4.5.

»Sound design is secondary, mappings are arbitrary.« For details to emerge in
sonifications, perceptual salience of the acoustic phenomena of interest is essen-
tial and depends critically on psychoacoustically well-informed design. Furthermore,
perception is sensitive to domain specific meanings, so finding convincing metaphors
can substantially increase accessibility. Stephen Barrass’ ear benders [2] provide many
interesting examples. Finally, "aesthetic intentions" can be a source of problems. If
one assumes that listeners will prefer hearing traditional musical instruments over
more abstract sounds, then pitch differences will likely sound "wrong" rather than
interesting. If one then designs the sonifications to be more "music-like" (e.g., by
quantizing pitches to the tempered scale and rhythms to a regular grid), one loses
essential details, introduces potentially misleading artefacts, and will likely still not
end up with something that is worthwhile music. It seems more advisable here to
create opportunities for practicing more open-minded listening, which may be both
epistemically and aesthetically rewarding once one begins to read the sonification’s
details fluently.

10.2 Overview of languages and systems

The history of sonification is also a history of laboratory practice. In fact, within the research
community, a number of sonification systems have been implemented and described since
the 1980s. They all differ in scope of features and limitations, as they were designed as
laboratory equipment, intended for different specialized contexts. These software systems
should be taken as integral part of the amalgam of experimental and thought processes, as
"reified theories" (a term coined by Bachelard [1]), or rather as a complex mix between
observables, documents, practices, and conventions [14, p. 18]. Some systems are now
historic, meaning they run on operating systems that are now obsolete, while others are in
current use, and thus alive and well; most of them are toolkits meant for integration into
other (usually visualization) applications. Few are really open and easily extensible; some
are specialized for very particular types of datasets.

The following sections look at dedicated toolkits for sonification, then focus on mature sound
and music programming environments, as they have turned out to be very useful platforms
for fluid experimentation with sonification design alternatives.



Laboratory Methods for Experimental Sonification 241

10.2.1 Dedicated toolkits for sonification

xSonify has been developed at NASA [7]; it is based on Java, and runs as a web service!.
It aims at making space physics data more easily accessible to visually impaired people.
Considering that it requires data to be in a special format, and that it only features rather
simplistic sonification approaches (here called ‘modi’), it will likely only be used to play
back NASA-prepared data and sonification designs.

The Sonification Sandbox [31] has intentionally limited range, but it covers that range well:
Being written in Java, it is cross-platform; it generates MIDI output e.g., to be fed into any
General MIDI synth (such as the internal synth on many sound cards). One can import data
from CSV text files, and view these with visual graphs; a mapping editor lets users choose
which data dimension to map to which sound parameter: Timbre (musical instruments), pitch
(chromatic by default), amplitude, and (stereo) panning. One can select to hear an auditory
reference grid (clicks) as context. It is very useful for learning basic concepts of parameter
mapping sonification with simple data, and it may be sufficient for some auditory graph
applications. Development is still continuing, as the release of version 6 (and later small
updates) in 2010 shows.

Sandra Pauletto’s toolkit for Sonification [21] is based on PureData and has been used for
several application domains: Electromyography data for Physiotherapy [22], helicopter flight
data, and others. While it supports some data types well, adapting it for new data is slow,
mainly because PureData is not a general-purpose programming language where reader
classes for data files are easier to write.

SonifYer [27] is a standalone application for OSX, as well as a forum run by the sonification
research group at Berne University of the Arts>. In development for several years now, it
supports sonification of EEG, fMRI, and seismological data, all with elaborate user interfaces.
As sound algorithms, it provides audification and FM-based parameter mapping; users can
tweak the settings of these, apply EQ, and create recordings of the sonifications created for
their data of interest.

SoniPy is a recent and quite ambitious project, written in the Python language [33]. Its
initial development push in 2007 looked very promising, and it takes a very comprehensive
approach at all the elements the authors consider necessary for a sonification programming
environment. It is an open source project and is hosted at sourceforge®, and may well evolve
into a powerful and interesting sonification system.

All these toolkits and applications are limited in different ways, based on resources for
development available to their creators, and the applications envisioned for them. They tend
to do well what they were intended for, and allow users quick access to experimenting with
existing sonification designs with little learning effort.

While learning music and sound programming environments will require more effort, espe-
cially from users with little experience in doing creative work with sound and programming,
they already provide rich and efficient possibilities for sound synthesis, spatialization, real-
time control, and user interaction. Such systems can become extremely versatile tools for
the sonification laboratory context by adding what is necessary for access to the data and its

Uhttp://spdf.gsfc.nasa.gov/research/sonification
Zhttp://sonifyer.org/
3http://sourceforge.net/projects/sonipy
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domain. To provide some more background, an overview of the three main families of music
programming environments follows.

10.2.2 Music and sound programming environments

Computer Music researchers have been developing a rich variety of tools and languages
for creating sound and music structures and processes since the 1950s. Current music and
sound programming environments offer many features that are directly useful for sonification
purposes as well. Mainly, three big families of programs have evolved, and most other music
programming systems are conceptually similar to one of them.

Offline synthesis: MusicN to CSound

MusicN languages originated in 1957/58 from the Music I program developed at Bell Labs
by Max Mathews and others. Music IV [18] already featured many central concepts in
computer music languages such as the idea of a Unit Generator (UGen) as the building block
for audio processes (unit generators can be, for example, oscillators, noises, filters, delay
lines, or envelopes). As the first widely used incarnation, Music V was written in FORTRAN
and was thus relatively easy to port to new computer architectures, from where it spawned a
large number of descendants.

The main strand of successors in this family is CSound, developed at MIT Media Lab begin-
ning in 1985 [29], which has been very popular in academic as well as dance computer music.
Its main approach is to use very reduced language dialects for orchestra files (consisting of
descriptions of DSP processes called instruments), and score files (descriptions of sequences
of events that each call one specific instrument with specific parameters at specific times). A
large number of programs were developed as compositional front-ends in order to write score
files based on algorithmic procedures, such as Cecilia [23], Cmix, Common Lisp Music, and
others. CSound created a complete ecosystem of surrounding software.

CSound has a very wide range of unit generators and thus synthesis possibilities, and a
strong community; the CSound Book demonstrates its scope impressively [4]. However,
for sonification, it has a few substantial disadvantages. Even though it is text-based, it
uses specialized dialects for music, and thus is not a full-featured programming language.
Any control logic and domain-specific logic would have to be built into other languages
or applications, while CSound could provide a sound synthesis back-end. Being originally
designed for offline rendering, and not built for high-performance real-time demands, it is not
an ideal choice for real-time synthesis either. One should emphasize however that CSound is
being maintained well and is available on very many platforms.

Graphical patching: Max/FTS to Max/MSP(/Jitter) to PD/GEM

The second big family of music software began with Miller Puckette’s work at IRCAM on
Max/FTS in the mid-1980s, which later evolved into Opcode Max, which eventually became
Cycling’74’s Max/MSP/Jitter environment*. In the mid-1990s, Puckette began developing

“http://cycling74.com/products/maxmspjitter/
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an open source program called PureData (Pd), later extended with a graphics system called
GEM.> All these programs share a metaphor of "patching cables", with essentially static
object allocation of both DSP and control graphs. This approach was never intended to
be a full programming language, but a simple facility to allow connecting multiple DSP
processes written in lower-level (and thus more efficient) languages. With Max/FTS, for
example, the programs actually ran on proprietary DSP cards. Thus, the usual procedure
for making patches for more complex ideas often entails writing new Max or Pd objects in
C. While these can run very efficiently if well written, special expertise is required, and the
development process is rather slow, and takes the developer out of the Pd environment, thus
reducing the simplicity and transparency of development.

In terms of sound synthesis, Max/MSP has a much more limited palette than CSound, though
a range of user-written MSP objects exist. Support for graphics with Jitter has become very
powerful, and there is a recent development of the integration of Max/MSP into the digital
audio environment Ableton Live. Both Max and Pd have a strong (and partially overlapping)
user base; the Pd base is somewhat smaller, having started later than Max. While Max is
commercial software with professional support by a company, Pd is open-source software
maintained by a large user community. Max runs on Mac OS X and Windows, but not on
Linux, while Pd runs on Linux, Windows, and OS X.

Real-time text-based environments: SuperCollider, ChucK

The SuperCollider language today is a full-fledged interpreted computer language which was
designed for precise real-time control of sound synthesis, spatialization, and interaction on
many different levels. As much of this chapter uses this language, it is discussed in detail in
section 10.3.

The ChucK language has been written by Ge Wang and Perry Cook, starting in 2002. It
is still under development, exploring specific notions such as being strongly-timed. Like
SuperCollider, it is intended mainly as a music-specific environment. While being cross-
platform, and having interfacing options similar to SC3 and Max, it currently features a
considerably smaller palette of unit generator choices. One advantage of ChucK is that it
allows very fine-grained control over time; both synthesis and control can have single-sample
precision.

10.3 SuperCollider: Building blocks for a sonification
laboratory

10.3.1 Overview of SuperCollider

The SuperCollider language and real-time rendering system results from the idea of merging
both real-time synthesis and musical structure generation into a single environment, using
the same language. Like Max/PD, it can be said to be an indirect descendant of MusicN
and CSound. From SuperCollider 1 (SC1) written by James McCartney in 1996 [19], it
has gone through three complete rewriting cycles, thus the current version SC3 is a very

Shttp://puredata.info/
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mature system. In version 2 (SC2) it inherited much of its language characteristics from
the Smalltalk language; in SC3 [20] the language and the synthesis engine were split into a
client/server architecture, and many features from other languages such as APL and Ruby
were adopted as options.

As a modern and fully-fledged text-based programming language, SuperCollider is a flexible
environment for many uses, including sonification. Sound synthesis is very efficient, and
the range of unit generators available is quite wide. SC3 provides a GUI system with a
variety of interface widgets. Its main emphasis, however, is on stable real-time synthesis.
Having become open-source with version 3, it has since flourished. Today, it has quite active
developer and user communities. SC3 currently runs on OS X and Linux. There is also a
less complete port to Windows.

10.3.2 Program architecture

SuperCollider is divided into two processes: the language (sclang, also referred to as client)
and the sound rendering engine (scsynth, also referred to as server). These two systems
connect to each other via the networking protocol OpenSoundControl (OSC).6

SuperCollider is an interpreted fully-featured programming language. While its architecture
is modeled on Smalltalk, its syntax is more like C++. Key features of the language include
its ability to express and realize timing very accurately, its rapid prototyping capabilities, and
the algorithmic building blocks for musical and other time-based compositions.

In contrast to sclang, the server, scsynth, is a program with a fixed architecture that was
designed for highly efficient real-time sound-rendering purposes. Sound processes are created
by means of synthesis graphs, which are built from a dynamically loaded library of unit
generators (UGens); signals can be routed on audio and control buses, and soundfiles and
other data can be kept in buffers.

This two-fold implementation has major benefits. First, other applications can use the sound
server for rendering audio; Second, it scales well to multiple machines/processor cores, i.e.,
scsynth can run on one or more autonomous machines; and Third, decoupling sclang and
scserver makes both very stable.

However, there are also some drawbacks to take into account. Firstly, there is always network
latency involved, i.e., real-time control of synthesis parameters is delayed by the (sometimes
solely virtual) network interface. Secondly, the network interface introduces an artificial
bottleneck for information transfer, which in turn makes it hard to operate directly on a per
sample basis. Thirdly, there is no direct access to server memory from sclang. (On OS X,
this is possible by using the internal server, so one can choose one’s compromises.)

SuperCollider can be extended easily by writing new classes in the SC language. There is a
large collection of such extension libraries called Quarks, which can be updated and installed
from within SC3.” One can also write new Unit Generators, although a large collection of
these is already available as sc3-plugins.®

Shttp://opensoundcontrol.org/
7See the Quarks help file for details
8http://sourceforge.net/projects/SC3 plugins/
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10.3.3 Coding styles

Thanks to the scope of its class library and its flexible syntax, SuperCollider offers many
techniques to render and control sounds, and a variety of styles of expressing ideas in
code. This short overview describes the basics of two styles (object style and pattern
style), and shows differences in the way to introduce sound dynamics depending on external
processes (i.e., data sonification). For a more detailed introduction to SuperCollider as a
sound rendering and control language, please refer to the SuperCollider Book [32]. This also
features a dedicated chapter on sonification with SuperCollider.

Object style Object-style sound control hides the network-based communication between
client and server with an object-oriented approach. All rendering of sound takes place within
the synthesis server (scsynth). The atom of sound synthesis is the unit generator (Ugen)
which produces samples depending on its input parameters. UGens form the constituents of
a fixed structure derived from a high-level description, the SynthDef, in sclang:

SynthDef (\pulse, { // create a synth definition named “pulse”
|freq = 440, amp = 0.1| // controls that can be set at runtime
Out.ar( // create an outlet for the sound
0, // on channel 0 (left)
Pulse.ar( // play a pulsing signal
freq // with the given frequency
) * amp // multiply it by the amp factor to determine its volume
)i
}).add; // add it to the pool of SynthDefs

T Y I ST I SR,

In order to create a sound, we instantiate a Synth object parameterised by the SynthDef’s
name:

1| x = Synth (\pulse);

This does two things: firstly, it creates a synth object on the server which renders the sound
described in the pulse synthesis definition, and secondly, it instantiates an object of type
Synth on the client, a representation of the synth process on the server with which the
language is able to control its parameters:

l‘x.set(\freq, 936.236); // set the frequency of the Synth

To stop the synthesis you can either evaluate

1‘x.free; ‘

or press the panic-button (hear sound example S10.1).° The latter will stop all synthesis
processes, re-initialise the server, and stop all running tasks, whereas x . free properly
releases only the synth process concerned and leaves everything else unaffected.

In this strategy, we can implement the simplest parameter mapping sonification possible
in SuperCollider (see also section 10.4.2). Let’s assume we have a dataset consisting of a
one-dimensional array of numbers between 100 and 1000:

1fla= [ 191.73, 378.39, 649.01, 424.49, 883.94, 237.32, 677.15, 812.15 1;

9<Cmd>-. on OS X, <Esc> in gedit, <Ctrl>-c <Ctrl>-s inemacs, and <alt>-. on Windows.

©
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With a construction called 7ask, a pauseable process that can run in parallel to the interactive
shell, we are now able to step through this list and create a sound stream that changes its
@) frequency according to the values in the list (hear sound example S10.2):

1| Task {

2 // instantiate synth

3 x = Synth(\pulse, [\freq, 20, \amp, 01);

4 0.1.wait;

5

6 x.set (\amp, 0.1); // turn up volume
7 // step through the array

8 a.do{litem| // go through each item in array a
9 // set freq to current value

10 x.set (\freq, item);

11

12 // wait 0.1 seconds

13 0.1.wait;

14 };

15

16 // remove synth

17 x.free;

18| }.play;

The above SynthDef is continuous, i.e., it describes a sound that could continue forever. For
many sound and sonification techniques, however, a sound with a pre-defined end is needed.
This is done most simply with an envelope. It allows the generation of many very short sound
events (sound grains). Such a grain can be defined as:

1| SynthDef (\sinegrain, {

2 lout = 0, attack = 0.01, decay = 0.01, freq, pan = 0, amp = 0.5]
3

4 var sound, env;

5

6 // an amplitude envelope with fixed duration

7 env = EnvGen.ar (Env.perc (attack, decay), doneAction: 2);
8

9 // the underlying sound

10 sound = FSinOsc.ar (freq);

11

12 // use the envelope to control sound amplitude:

13 sound = sound * (env x amp);

14

15 // add stereo panning

16 sound = Pan2.ar (sound, pan);

17

18 // write to output bus

19 Out.ar (out, sound)

20| }) .add;

To render one such grain, we evaluate

1| Synth.grain (\sinegrain, [\freq, 4040, \pan, 1.0.rand2]);

Note that, in difference to the above example, the grain method creates an anonymous synth
on the server, which cannot be modified while running. Thus, all its parameters are fixed
when it is created. The grain is released automatically after the envelope is completed, i.e.,
the sound process stops and is removed from the server.

Using the dataset from above, a discrete parameter mapping sonification can be written like
@) this (hear sound example S10.3):

1| Task {
2 // step through the array
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3 a.do{|item|

4 // create synth with freq parameter set to current value

5 // and set decay parameter to slightly overlap with next grain

6 Synth.grain (\sinegrain, [\freq, item, \attack, 0.001, \decay, 0.2]);
7

8 0.1.wait; // wait 0.1 seconds between grain onsets

9 }i

0| }.play;

A third way to sonify a dataset is to first send it to a Buf fer — a server-side storage for
sequential data — and then use it as the source for dynamics control (hear sound example

S10.4): ©
1| b = Buffer.loadCollection/(
2 server: s,
3 collection: a,
4 numChannels: 1,
5 action: {"load completed".inform}
6|);
7
8| SynthDef (\bufferSon, {|out = 0, buf = 0, rate = 1, t_trig = 1, amp = 0.5]|
9 var value, synthesis;
10
11 value = PlayBuf.ar(
12 numChannels: 1,
13 bufnum: buf,
14 rate: rate/SampleRate.ir,
15 trigger: t_trig,
16 loop: O
17 )i
18
19 synthesis = Saw.ar (value);
20
21 // write to outbus
22 Out.ar (out, synthesis * amp);
23] }) .add;
24
25| x = Synth (\bufferSon, [\buf, b])
26
27| x.set (\rate, 5000); // set rate in samples per second
28| x.set (\t_trig, 1); // start from beginning
29| x.free; // free the synthesis process

This style is relatively easy to adapt for audification by removing the synthesis process and
writing the data directly to the audio output:

1
2| SynthDef (\bufferAud, {|out = 0, buf = 0, rate = 1, t_trig = 1, amp = 0.5]|
3

4 var synthesis = PlayBuf.ar(

5 numChannels: 1,

6 bufnum: buf,

7 rate: rate/SampleRate.ir,

8 trigger: t_trig,

9 loop: O

10 )i

11

12 // write to output bus

13 Out.ar (out, synthesis * amp)

14| }) .add;

As the server’s sample representation requires samples to be between —1.0 and 1.0, we have
to make sure that the data is scaled accordingly. Also, a larger dataset is needed (see the
chapter on audification, 12, for details). An artificially generated dataset might look like
this:
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a = {|ilcos(ix*x(sin(0.0175%1i%1i)))}!10000;
a.plot2; // show a graphical representation;

(S}

We can now load the dataset to the server and instantiate and control the synthesis process,
just as we did in the example above (hear sound example S10.5):

b = Buffer.loadCollection/(

server: s,

collection: a,

numChannels: 1,

action: {"load completed".inform}

)

// create synth
x =

© 0 NN AW —

x.set
X.set
13| X.set
X.set

\t_trig,
\rate,

16| x.free;

Synth (\bufferAud,

1);
200) ;
\t_trig, 1,
\t_trig, 1,

[\buf, b, \rate, 44100]);
// restart
// adjust rate
400); // restart with adjusted rate

1500);

\rate,
\rate,

Pattern style Patterns are a powerful option to generate and control sound synthesis
processes in SuperCollider. A pattern is a high-level description of sequences of values
that control a stream of sound events, which allows us to write, for example, a parameter
mapping sonification in a way that also non-programmers can understand what is going on.
Pattern-controlled synthesis is based on Event s, defining a (predominately sonic) event
with names and values for each parameter. Playing a single grain as defined in the object
style paragraph then looks like this:

1‘(instrument: \sinegrain, freq: 4040, pan: 1.0.rand2) .play

When playing a pattern, it generates a sequence of events. The definition of the above discrete
parameter mapping sonification in pattern style is (hear sound example S10.6):

1la = [ 191.73, 378.39, 649.01, 424.49, 883.94, 237.32, 677.15, 812.15 1;
2| Pbind(

3 \instrument, \sinegrain,

4 \freq, Pseq( a ), // a sequence of the dataset a

5 \attack, 0.001, // and fixed values as desired

6 \decay, 0.2, // for the other parameters

7 \dur, 0.1

8| ) .play

One benefit of the pattern style is that a wide range of these high-level controls already exist
in the language. Let us assume the dataset under exploration is two-dimensional:

a = [
[ 161.58,
[ 179.11,
[ 361.50,

395.14 1,
146.75 1,
985.79 1,

[ 975.38,
[ 697.64,
[ 550.85,

918.96 1,
439.80 1,
767.34 1,

[ 381.84,
[ 202.50,
[ 706.91,

293.27 1,
571.75 1,
901.56 1,

(SN TR SR,

We can play the dataset by simply defining a with this dataset and evaluating the Pbind
above. It results in two simultaneous streams of sound events, one for each pair (hear sound
example S10.7). With a slight adjustment, we can even let the second data channel be played
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panned to the right (hear sound example S10.8):

1| Pbind (

2 \instrument, \sinegrain,

3 \freq, Pseq( a ), // a sequence of the data (a)

4 \attack, 0.001,

5 \decay, 0.2,

6 \pan, [-1, 11, // pan first channel to left output, second to right
7 \dur, 0.1

8| ) .play

Comparison of styles

For modifying continuous sounds, and handling decisions unfolding in time very generally,
‘tasks’ are a very general and flexible tool. For creating streams from individual sounds,

‘patterns’ provide many options to express the implemented ideas in very concise terms.

Depending on the context and personal preferences in thinking styles, one or other style
may be better suited for the task at hand. The Just In Time Programming Library (JITLib)
provides named proxies for tasks (Tdef), patterns (Pdef), and synths (Ndef), which allow to
change running programs, simplify much technical administration, and thus can speed up
development significantly.'”

10.3.4 Interfacing

In this section, essential tools for loading data, recording the sonifications, and controlling
the code from external processes are described. Due to the scope of this book, only the very
essentials are covered. For a more in-depth overview on these themes, please consult the
corresponding help pages, or the SuperCollider book [32].

Loading data Supposed, we have a dataset stored as comma-separated values (csv) in a
text file called data.csv:

1| -0.49, 314.70, 964, 3.29
2| -0.27, 333.03, 979, 1.96
3| 0.11, 351.70, 1184, 5.18
4/ -0.06, 117.13, 1261, 2.07
5| -0.02, 365.15, 897, 2.01
6| -0.03, 107.82, 1129, 2.24
7| -0.39, 342.26, 1232, 4.92
8| -0.29, 382.03, 993, 2.35

We can read these into SuperCollider with help of the CSVFileReader class:

a = CSVFileReader.readInterpret ("data.csv");
a.postcs; // post data

(S}

Each row of the dataset is now represented in SuperCollider as one array. These arrays are
again collected in an enclosing array. A very simple sonification using the pattern method
described in Section 10.3.3 looks like this:

1| // transpose the data representation
2| // now the inner arrays represent one row of the dataset

10For more information, see the JITLib help file, or the JITLib chapter in the SuperCollider book [32].

©
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b = a.flop;

3

4

5] (

6| Pbind (
7 \instrument, \sinegrain,

8 \freq, Pseq([b[l], b[2]].flop, 2),
9 \attack, 0.002,

10 \decay, Pseq(b[3] » 0.1, inf),
11 \pan, Pseq(b[0], inf),

12 \dur, 0.1

13|) .play

14] )

For very large data sets which are common in sonification it may be advisable to keep the
data in a more efficiently readable format between sessions. For time series, such as EEG
data, converting them to soundfiles will reduce load times considerably. For other cases,
SuperCollider provides an archiving method for every object:

// store data
a.writeArchive (path);

// read data
a = Object.readArchive (path);

S

This can reduce load time by an order of two.

Recording sonifications SuperCollider provides easy and flexible ways to record real-
time sonifications to soundfiles. Only the simplest case is covered here; please see the Server
help file for more details.

1 // start recording

2| s.record("/path/to/put/recording/test.wav") ;
3 // run your sonification now ...

4 // stop when done

5| s.stopRecording;

Control from external processes SuperCollider can be controlled from external appli-
cations by means of OpenSoundControl (OSC) [34]. Let us assume that an external program
sends OSC messages in the following format to SC3!':

1| /data, 1ff 42 23.0 3.1415

You can set up a listener for this message with:

OSCresponder (nil, "/data", {|time, responder, message]
2 "message % arrived at %$\n".postf (message, time);
}) .add;

w

We leave it as an exercise to the reader to integrate this into a sonification process. In-depth
discussions of many sonification designs and their implementations in SC3 can be found in
Bovermann [5] and de Campo [9].

"Note that SuperCollider’s default port for incoming OSC messages is 57120.
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10.4 Example laboratory workflows and guidelines for working
on sonification designs

This section discusses many of the common concerns in creating, exploring and experiment-
ing with sonification designs and how to integrate them in a laboratory workflow. Here,
theoretical considerations alternate with examples that are generic enough to make it easy to
adapt them to different contexts.

What is usually interesting about specific data sets is discovering the possible relationships
between their constituents; some of these relations may be already established, whereas
others may not yet be evident. Perceptualization is the systematic attempt to represent such
relationships in data (or generally, objects under study) such that relationships between the
constituents of the sensory rendering emerge in perception. This means that an observer
notices gestalts, which may confirm or disprove hypotheses about relationships in the data.
This process relies on human perceptual and cognitive abilities; most importantly that of
organizing sensory events into larger groups. In auditory perception, this grouping of
individual events depends on their perceptual parameters and their relationships, i.e., mainly
inter-similarities and proximities.

In a successful sonification design, the relationships within the local dynamic sound structure
(the proximal cues) allow a listener to infer insights into the data being sonified, effectively
creating what can be considered distal cues. As there are very many possible variants of
sonification design, finding those that can best be tuned to be very sensitive to the relationships
of interest, however, is a nontrivial methodological problem.

The Sonification Design Space Map (SDSM) [8, 9] aims to help in the process of developing
sonification designs. Put very briefly, while the working hypotheses evolve, as the sonification
designs become more and more sophisticated, one repeatedly answers three questions:

1. How many data points are likely necessary for patterns to emerge perceptually?
2. How many and which data properties should be represented in the design?
3. How many parallel sound-generating streams should the design consist of?

Based on the answers, the SDSM recommends making sure the desired number of data points
is rendered within a time window of 3—10 seconds (in order to fit within non-categorical
echoic memory) [28], and it recommends suitable strategies (from Continuous, Discrete-
Point, and Model-based approaches). As Figure 10.1 shows, changes in the answers corre-
spond to movements of the current working location on the map: Zooming in to fewer data
points for more detail moves it to the left, zooming out moves it to the right; displaying more
data dimensions moves it up, while using more or fewer parallel sound streams moves it in
the z-axis.

In practice, time spent exploring design alternatives is well spent, and helps by clarifying
which (seemingly natural) implicit decisions are being taken as a design evolves. The
process of exchange and discussion in a hypothetical research team, letting clearer questions
evolve as the sonification designs become more and more sensitive to latent structures in the
data, process or model under study, is of fundamental importance. It can be considered the
equivalent of the common experience in laboratory work that much of the total work time
is absorbed by setting up and calibrating equipment, until the experimental setup is fully
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Figure 10.1: The Sonification Design Space Map.

"tuned", while by comparison, much less time is usually spent with actual measurement runs
themselves. Such calibration processes may involve generating appropriate test data, as well
as doing listening tests and training.

There now follow three sections explaining typical scenarios, in which data sonification
workers may find themselves. As proximity in time is the property that creates the strongest
perceptual grouping, especially in sound, the first section covers data ordering concepts and
the handling of time in sonification. The second section discusses fundamental issues of
mapping of data dimensions to sound properties via synthesis parameters, which requires
taking perceptual principles into account. The later three sections address more complex
cases, which raise more complex sets of questions.

10.4.1 Basics 1: Order, sequence, and time

In any data under study, we always need to decide which relations can be ordered and
according to what criteria. Data from different geographic locations, for instance, may be
ordered by longitude, latitude and/or altitude. Mapping a data order to a rendering order
(such as altitude to a time sequence) means treating one dimension differently from the
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others.

As temporal order is the strongest cue for grouping events perceptually in the sonic domain,
experimenting with mappings of different possible data orders to the temporal order of
sounds can be very fruitful.

Example solutions

Here is a very simple example to demonstrate this constellation. Assume for simplicity
that the domain data points are all single values, and they come in a two dimensional order,
represented by an array:

a = [

[ 0.97, 0.05, -0.22, 0.19, 0.53, -0.21, 0.54, 0.1, -0.35, 0.04 ],
[ -0.07, 0.129, ©0.67, 0.05, -0.91, 0.1, -0.8, -0.21, 1, -0.17 1],
[ 0.67, -0.05, -0.07, -0.05, 0.97, -0.65, -0.21, -0.8, 0.79, 0.75 ]

1;

Two ordered dimensions are obvious, horizontal index, and vertical index, and a third one
is implied: the magnitude of the individual numbers at each index pair. Depending on
where this data came from, the dimensions may correlate with each other, and others may be
implied, some of which may be unknown.

For experimentation, we define a very simple synthesis structure that creates percussive
decaying sound events. This is just sufficient for mapping data values to the most sensitive
perceptual property of sound - pitch - and experimenting with different ordering strategies.

SynthDef (\x, {
var sound =

|freq = 440, amp = 0.1, sustain = 1.
SinOsc.ar (freq);

0, out = 0|

var env = EnvGen.kr (Env.perc(0.01, sustain, amp), doneAction: 2);
Out.ar (out, sound * env);
}) .add;

This sound event has four parameters: amplitude, sustain (duration of sound), frequency, and
output channel number (assuming one uses a multichannel audio system).

As there is no inherent preferred ordering in the data, a beginning strategy would be to
experiment with a number of possible orderings to develop a sense of familiarity with the
data and its possibilities, and noting any interesting details that may emerge.

Relating time sequence with horizontal index, and frequency to the data value at that point,
we can begin by playing only the first line of the data set (hear sound example S10.9):

// define a mapping from number value to frequency:
f = { |x| x.linexp (-1, 1, 250, 1000) };
Task {
var line = a[0]; // first line of data
line.do { |val]
(instrument: \x, freq: f.value(val)).play;
0.3.wait;
}
}.play;

Next, we play all three lines, with a short pause between events and a longer pause between
lines, to maintain the second order (hear sound example S10.10):

©

©
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Task {
a.do { |line]|
line.do { |val]|
(instrument: \x, freq: f.value(val)) .play;
0.1.wait;
}I
0.3.wait;
}.play;

When we sort each line before playing it, the order in each line is replaced with order by
magnitude (hear sound example S10.11):

Task {
a.do { |line|
line.copy.sort.do { |val]
(instrument: \x, freq: f.value(val)) .play;
0.1.wait;
bi
0.3.wait;

}
}.play;

We play each line as one chord, so the order within each line becomes irrelevant (hear sound
example S10.12):

Task {

a.do { |line|
line.do { |val]|
(instrument: \x, freq: f.value(val)).play; // no wait time here
}i
0.3.wait;
}.play;

We can also use vertical order, and play a sequence of all columns (hear sound example
S10.13):

Task {
var cols = a.flop; // swap rows <-> columns
cols.do { |col]|
col.do { |[vall]
(instrument: \x, freq: f.value(val)).play;
0.1.wait; // comment out for 3-note chords
bi
0.3.wait;

}i
}.play;

Finally, we play all values in ascending order (hear sound example S10.14):

Task {
var all = a.flat.sort;
all.do { |val]|
(instrument: \x, freq: f.value(val)) .play;
0.1.wait;
}i
}.play;

All these variants bring different aspects to the foreground: Hearing each line as a melody
allows the listener to compare the overall shapes of the three lines. Hearing each column as a
three note arpeggio permits comparing columns for similarities. Hearing each column as a
chord brings similarity of the (unordered) sets of elements in each column into focus. Hearing
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each line sorted enables observation of what value ranges in each line values are denser or
sparser. Sorting the entire set of values applies that observation to the entire dataset.

Discussion

It is productive to be aware of explicit orderable and un-orderable dimensions. Simple
experiments help the designer to learn, to adjust, and to develop how these dimensions
interrelate. Writing systematic variants of one experiment brings to the surface nuances
that may become central evidence once discovered. For instance, with every new ordering,
different structures might emerge. With unknown data, cultivating awareness of alternative
orderings and data structures will help for fruitful experimentation and for learning to
distinguish the impact of differences on a given sonification. Note that there are many
psychoacoustic peculiarities in timing — for instance, parallel streams of sound may emerge
or not dependent on tempo, and a series of events may fuse into a continuum.

10.4.2 Basics 2: Mapping and perception

Every sonification design involves decisions regarding how the subject of study determines
audible aspects of the perceptible representation. It is thereby necessary to take into account
the psychoacoustic and perceptual concepts underlying sound design decisions. Here, the
discussion of these facts is very brief; for a more in-depth view see chapter 3, for a longer
discussion of auditory dimensions see chapter 4, finally, for an introduction to mapping and
scaling, see chapter 2.

Audible aspects of rendered sound may serve a number of different purposes:

1. Analogic display - a data dimension is mapped to a synthesis parameter which is easy
to recognise and follow perceptually. Pitch is the most common choice here; timbral
variation by modulation techniques is also well suited for creating rich, non-categorical
variety.

2. Labelling a stream — this is needed for distinguishing categories, especially when
several parallel streams are used. Many designers use instrumental timbres here;
we find that spatial position is well suited as well, especially when using multiple
loudspeakers as distinct physical sound sources.

3. Context information/orientation — this is the mapping non-data into the rendering, such
as using clicks to represent a time grid, or creating pitch grids for reference.

Tuning the ranges of auditory display parameters plays a central role in parameter mapping
sonification (see chapter 15), but indirectly it plays into all other approaches as well. Physical
parameters, such as frequency and amplitude of a vibration, are often spoken of in identical
terms to synthesis processes, as in the frequency and amplitude of an oscillator. They typically
correspond to perceived sound properties, like pitch and loudness, but the correspondence is
not always a simple one. First, we tend to perceive amounts of change relative to the absolute
value; a change of 6% of frequency will sound like a tempered half-step in most of the audible
frequency range. Second, small differences can be inaudible; the limit where half the test
subjects say a pair of tones is the same and the other half says they are different is called the
Jjust noticeable difference (JND). The literature generally gives pitch JND as approximately
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0.2 half-steps or about 1% frequency difference (degrading towards very high and very low
pitches, and for very soft tones) and loudness differences of around 1 dB (again, worse for
very soft sounds, and potentially finer for loud sounds). However, this will vary depending
on the context: when designing sonifications, one can always create test data to learn which
data differences will be audible with the current design. In the example in section 10.4.1,
the numerical value of each data point was mapped to an exponential frequency range of
250 — 1000 Hz. In the first data row, the smallest difference between two values is 0.01. We
@) may ask now whether this is audible with the given design (hear sound examples S10.15 and
@ S10.16):

// alternate the two close values

1

2| Task { loop {

3 [0.53, 0.54].do { |vall

4 (instrument: \x, freq: f.value(val)).play;
5 0.1.wait;

6 }

70} }.play;

8

9

// then switch between different mappings:

0| f = { |x|] x.linexp(-1, 1, 250, 1000) }; // mapping as it was
{ |x|] x.linexp(-1, 1, 500, 1000) }; // narrower

2| f = { |x| x.linexp (-1, 1, 50, 10000) }; // much wider

Hh
Il

14 // run entire dataset with new mapping:

15| Task {

16 a.do { |line|

17 line.do { |vall]

18 (instrument: \x, freq: f.value(val)).play;
19 0.1l.wait;

20 }

21 }i

22 0.3.wait;

23| }.play;

When playing the entire dataset with the new wider mapping, a new problem emerges: the
higher sounds appear louder than the lower ones. The human ear’s perception of loudness of
sine tones depends on their frequencies. This nonlinear sensitivity is measured experimentally
in the equal loudness contours (see also chapter 3). In SC3, the UGen AmpComp models
this: based on the frequency value, it generates boost or attenuation factors to balance the
sound’s loudness. The following SynthDef exemplifies its usage:

1| SynthDef (\x, { |freq = 440, amp = 0.1, sustain = 1.0, out = 0]

2 var sound = SinOsc.ar (freq);

3 var ampcomp = AmpComp.kr (freg.max(50)); // compensation factor

4 var env = EnvGen.kr (Env.perc(0.01, sustain, amp), doneAction: 2);
5 Out.ar (out, sound * ampcomp * env);

6| }) .add;

So far also it is assumed that the sound events’ duration (its sustain) is constant (at 1 second).

This was just an arbitrary starting point; when one wants to render more sound events into

the same time periods, shorter sounds have less overlap and thus produce a clearer sound

shape. However, one loses resolution of pitch, because pitch perception becomes more vague
@)  with shorter sounds (hear sound example S10.17).

1| Task {

2 a.do { |line|

3 line.do { |val]|

4 (instrument: \x, freq: f.value(val), sustain: 0.3).play;
5 0.1.wait;

6 bi
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8
9

bi
0.3.wait;
}.play;

We can also decide to assume that each of the three lines can have a different meaning; then
we could map, for example, the values in the first line to frequency, the second to sustain,
and the third to amplitude (hear sound example S10.18):

Task {
var cols = a.flop; // swap rows <-> columns
cols.do { |vals]|
var freq = vals[0].linexp (-1, 1, 300, 1000);
var sustain = vals[l].linexp(-1, 1, 0.1, 1.0);
var amp = vals[2].linexp(-1, 1, 0.03, 0.3);
(instrument: \x,
freq: freq,
sustain: sustain,
amp: amp
) .play;
0.2.wait;

by
}.play;

Finally, we make a different set of assumptions, which leads to different meanings and
mappings again: If we interpret the second line to be a comparable parameter to the first, and
the third line to represent how important the contribution of the second line is, we can map
the three lines to basic frequency, modulation frequency, and modulation depth (hear sound
example S10.19):

1| SynthDef (\xmod, { |freq = 440, modfreq = 440, moddepth = 0,
2 amp = 0.1, sustain = 1.0, out = 0|
3 var mod = SinOsc.ar (modfreq) * moddepth;
4 var sound = SinOsc.ar (freq, mod);
5 var env = EnvGen.kr (Env.perc(0.01, sustain, amp), doneAction: 2);
6 Out.ar (out, sound * env);
7| }) .add;
8
9| Task {
10 var cols = a.flop; // swap rows <-> columns
11 cols.do { |vals|
12 var freq = vals[0].linexp (-1, 1, 250, 1000);
13 var modfreq = vals[l].linexp(-1, 1, 250, 1000);
14 var moddepth = vals[2].linexp(-1, 1, 0.1, 4);
15 (instrument: \xmod,
16 modfreq: modfreq,
17 moddepth: moddepth,
18 freq: freq,
19 sustain: 0.3,
20 amp: 0.1
21 ) .postln.play;
22 0.2.wait;
23 }i
24| }.play;
Discussion

Tuning display processes in such a way that they are easy to read perceptually is by no means
trivial. Many synthesis and spatialization parameters behave in subtly or drastically different
ways and lend themselves to different purposes in mappings. For example, while recurrent

©
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patterns (even if shifted and scaled) are relatively easy to discern when mapped to pitch,
mapping them to loudness would make recognizing them more difficult, whereas mapping
them to spatial positions would reduce the chances of false assignment.

In the sonification laboratory, it is good practice to test the audible representation, in much
the same way as one would other methods. By creating or selecting well-understood test
datasets, and verifying that the intended audience can confidently hear the expected level of
perceptual detail, one can verify its basic viability for the context under study.

10.4.3 Vector spaces

While a given dataset is never entirely without semantics, it can be heuristically useful to
abstract from what is known in order to identify new relations and thus build up a new
semantic layer. One may quite often be confronted with the task of sonifying a numerical
dataset that is embedded into a high-dimensional vector space, where axis descriptions were
actively pruned. In other words, the orientation of the vector basis is arbitrary, thus carrying
no particular meaning. We would like to be able to experiment with different approaches that
take this arbitrariness into account.

Example solutions

Simple mapping approaches may consist of random mapping choices, picking one dimension
for time ordering, and choosing others for mapping to control parameters of the sound display.
For examples on these, see sections 10.4.1 and 10.4.2.

Principal Component Analysis (PCA) A related linearization method for datasets
embedded into vector spaces is to find a linear transformation:

(with z; data item, Z; transformed data item, 0 new origin, and a; the i-th basis vector) that
— based on either domain-specific knowledge or based on the actual dataset — makes sense.
One option for deriving dataset-inherent knowledge is Principal Component Analysis (PCA)
which returns basis vectors ordered by variances in their direction.!> For more details on this
approach, see chapter 8. The pc1l method on SequenceableCollection, provided
with the MathLib quark, calculates an estimation of the first principal component for a given,
previously whitened dataset:

1| // a 2-d dataset with two quasi-gaussian distributions
2ld = {#[[-1, -0.5], [1, 0.5]].choose + ({0.95.gauss}!2)}!10000;
3|p = d.pcl; // first principal component

To estimate the next principal component, we have to subtract the fraction of the first one
and do the estimation again:

1| £ = d.collect{|x]|
2 var proj;

12While nearly any dataset could be interpreted as a vector-space, PCA is more useful for high-dimensional data.
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a n kW

proj = ((v * x).sum * v); // projection of x to v
x-proj; // remove projection from data item

}
p = d.pcl; // second principal component

R R Y I ST R SR,

For computing all principal components of a multidimensional dataset, we can apply the
process recursively:

// compute components for n-dimensional datasets

a= 0;
g.data; // the data
g.dim = g.data.shape.last
g.subtractPC = {|q, data, pcl|
var proj;
data.collect{|x|
proj = ((pc * x).sum * pc); // projection of x to v

x-proj; // remove projection from data item
i
}

// recursive function to calculate the steps needed
g.computePCs = {|q, data, pcs, dims|
var pc;

(dims > 1) .1if ({
pc = data.pcl;
pcs[data.shape.last-dims] = pc;
pcs = g.computePCs (q.subtractPC(data, pc), pcs, dims-1);
oo A
pc = data.pcl;
pcs[data.shape.last-dims] = pc;
b
pcs;

}

// calculate and benchmark. This might take a while
{g.pcs = g.computePCs (g.data, 0!qg.dim!g.dim, g.dim) }.bench;

This dimensional reduction, respectively dimension reorganization process alters the dataset’s
representation but not its (semantic) content. After this kind of pre-processing, strategies as
introduced in Sections 10.4.1 and Section 10.4.2 become applicable again.

For more complex, statistical analysis methods, we suggest using tools like octave'? or
NumPy/SciPy!* as they already implement well-tested methods for this, which otherwise
have to be implemented and tested in SuperCollider.

Distance If the absolute data values are not of interest (e.g., because of the absence of
a reference point), relative information might be worth sonifying. One such information
is the distance between data items. It implicitly contains information like dataset density
(both global and local), variance and outliers. The distance matrix for all data items can be
computed by:

g = 0;

// the dataset
g.data = {|dim = 4|

({{1.0.rand}!dim + 5}!100) ++ ({{10.0.rand}!dim}!100)
}.value

13http://www.gnu.org/software/octave/
Ywww.scipy.org/
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// function to compute the distance between two points
g.dist = {lq, a, bl
(a-b) .squared.sum.sqgrt;

}

// compute the distance matrix for the dataset

g.distanceMatrix = {|datal
var size = data.size;
var outMatrix = O!sizel!size; // fill a matrix with zeroes
var dist;

data.do{|item, 1i|

i.dof{ ]l
dist = g.dist (item, dataljl);
outMatrix[i][j] = dist;
outMatrix[j][i] = dist;
}
bi
outMatrix

}.value (g.data)

Since the resulting matrix can be recognised as an (undirected) graph, it can be sonified for
example by methods as described in the upcoming section 10.4.4.

Model-based sonification A third set of methods to sonify vector spaces are model-
based sonifications as introduced in chapter 16. Next is shown an example for a data
sonogram [15], which uses the data and distance algorithm described in the previous para-
graph.

SynthDef (\ping, {|freq = 2000, amp=1|

var src = Pulse.ar (freq);
var env = EnvGen.kr (Env.perc(0.0001, 0.01), 1, doneAction: 2) x amp;
Out.ar (0, (src % env) ! 2)

}) .add;

(

a=q9? 0

// generate score of 0OSC messages, sort and play

g.createScore = {|qg, dataset, rSpeed=1, impactPos]
var dist, onset, amp;

// set impactPos to a useful value - best by user interaction
impactPos = impactPos ? 0.0.dup(dataset.shape.last);

// for each data item, compute its distance from the impact center and
// create an event according to it in the scorex*/
// first ping represents impact
[[0, [\s_new, \ping, -1, 0, 0, \freg, 1500]]]
++ dataset.collect{|row]
// set onset time proportional to the distance
dist = g.dist (row, impactPos);
onset = dist x rSpeed;

// compute amplitude according to distance from impactPos
// less excitation > less amplitude
amp = dist.squared.reciprocal;

// finally, create the event
[onset, [\s_new, \ping, -1, 0, 0, \amp, ampl];
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// use the above defined function with a fixed position
g.scoreData = g.createScore(g.data, 2, 2!4);

// generate a score, sort, and play it
Score (gq.scoreData) .sort.play

)

In keeping with the scope of this chapter, this is quite a simplistic implementation. However,
it can be easily extended to feature also additional values of a dataset, e.g., by mapping them
to the frequency of the individual sonic grain. Also, it would be worth implementing a GUI
representation, allowing the user to literally tap the dataset at various positions.

Discussion

While semantics are an inherent part of any dataset, it is sometimes beneficial to consciously
neglect it. In the analysis of the insights gained, however, the semantics should be again
considered in order to understand what the new structural findings could really mean. While
keeping track of relevant details, methods like the ones discussed above permit a process
of gradually shifting between structure and meaning and of moving between different
domains.

10.4.4 Trees and graphs: towards sonifying higher order structures

Trees and graphs in general are characterised by the fact that they provide more than one
way to access or traverse them. As we can typically reach a node from more than one other
node, there is an inherent choice to be made. This also demonstrates that data is contextual
and access not immediate and univocal. Traversing a graph can be a non-trivial task — as
exemplified by Euler’s famous problem from 1735, of how to cross all Seven Bridges of
Koenigsberg only once, is a good example. Any grammatical structure, such as a computer
program, or even this very sentence, implies graphs.

0 1 2 3 4
0 0 0 0 1 0
1 1 0 1 0 1
2 0 0 1 0 0
3 0 0 1 0 1
4 0 0 1 1 0

Figure 10.2: Two representations of the same directed graph.
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Example solutions

One way to specify a general graph is a simple two-dimensional table, where each entry
represents a directed link between the start node (row number) and the end node (column
number) (see Figure 10.2). One simple way to sonify such a graph would be to move from
row to row and assign to each node X an n-dimensional sound event (e.g., a frequency
spectrum) according to the set of nodes S = {Xy, X1,... X, } to which it is connected.
This would sonify all links (vertices) S of each node. In order to also hear which node the
connections belong to, the first example simply plays the starting node, then its connections,
and the next node is separated by a longer pause (hear sound example S10.20).

a= 0;
SynthDef (\x, { |freq = 440, amp = 0.1, sustain = 1.0, out = 0]
var signal = SinOsc.ar (freq);
var env = EnvGen.kr (Env.perc(0.01, sustain, amp), doneAction: 2);
Out.ar (out, signal * env);
}) .add;
g.graph = [
te, o, o, 1, 01,
[ll OI ll OI l]l
te, o, 1, 0, 01,
t6, o, 1, 0, 11,
[o, o, 1, 1, 0]
17
// arbitrary set of pitches to label nodes:
g.nodeNotes = (0..4) * 2.4; // equal tempered pentatonic
Task {
// iterating over all nodes (order defaults to listing order)
loop {
g.graph.do { |arrows, 1]
var basenote = g.nodeNotes[i];
// find the indices of the connected nodes:
var indices = arrows.collect { |x, i| if(x > 0, i, nil) };
// keep only the connected indices (remove nils)
var connectedIndices = indices.select { |x| x.notNil };
// look up their pitches/note values
var connectedNotes = g.nodeNotes|[connectedIndices];
(instrument: \x, note: basenote) .play;
0.15.wait;
(instrument: \x, note: connectedNotes) .play;
0.45.wait;
}i
0.5.wait;
bi
}.play;

Another way of displaying the structure is to follow the unidirectional connections: each
node plays, then its connections, then one of the connections is chosen as the next starting
node. While the first example looked at the connections "from above", this procedure remains
faithful to the locality of connections as they appear "from inside" the graph (hear sound
example S10.21).

Task {
var playAndChoose = { |nodeIndex = 0]
var indices = g.graph[nodeIndex].collect { |x, 1| if(x > O, i, nil) };
var connectedIndices = indices.select { |x| x.notNil };

var basenote = g.nodeNotes[nodelIndex].postln;
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7 var connectedNotes = g.nodeNotes[connectedIndices];
8

9 (instrument: \x, note: basenote) .play;

10 0.15.wait;

11

12 (instrument: \x, note: connectedNotes) .play;

13 0.3.wait;

14 // pick one connection and follow it

15 playAndChoose.value (connectedIndices.choose);

16 }i

17 playAndChoose.value (gq.size.rand); // start with a random node
18| }.play;

As node 2 only points to itself, the sonification quickly converges on a single sound that only
connects to itself. If one changes node 2 to have more connections, other nodes become
accessible again.

// connect node node 2 to node 4:
g.graph[2].put (4, 1); // nodes 3 and 4 become accessible
g.graph[2].put (4, 0); // disconnect 4 from 2 again

A U R W —

g.graph([2].put(l, 1); // connect 2 to 1: all nodes are accessible now
g.graph([2].put(l, 0); // disconnect 1 from 2 again
Discussion

The examples given here were chosen for simplicity; certainly, more complex strategies can
be imagined.

The last design discussed above could be extended by supporting weighted connections —
they could be mapped to amplitude of the sounds representing the connected nodes, and to
probability weights for choosing the next node among the available connections. One would
likely want to include a halting condition for when a node has no further connections, maybe
by introducing a longer pause, then beginning again with a randomly picked new node. These
additions would allow monitoring a graph where connections gradually evolve over time.
Adding information to the edge itself (here, a real number between 0 and 1) is one case of a
labeled graph. Finally, this can be considered a sonification of an algorithm (as discussed
in the next section 10.4.5): such a graph is a specification of a finite state machine or its
statistical relative, a Markov chain. In a similar way, the syntactic structure of a program,
which forms a graph, may be sonified.

A tree is a special case of a graph in which every vertex has a specific level. So instead of
adding extra information to the edges, also the vertex may be augmented. In the case of
a tree, we augment each vertex by adding a partial order that tells us whether this node is
on a higher, a lower, or on the same level as any other node that it is connected to. This is
important wherever there is some hierarchy or clustering which we try to investigate. For
sonification, this additional information can be used to specify the way the graph is traversed
(e.g., starting from the highest level and going down to the lowest first — depth-first, or
covering every level first — breadth-first). Note that wherever one wants to guarantee that
every edge is only sonified once, it is necessary to keep a list of edges already traversed.
The order information need not solely inform the time order of sound events but also other
parameters, such as pitch (see section 10.4.2). Also it is possible to sonify a graph without
traversing it over time — it can also serve as a model for a synthesis tree directly [6].
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So far we have discussed only directed and connected graphs. Undirected graphs may be
represented by directed ones in which each pair of vertices is connected by two edges, so
they don’t pose new difficulties as such. For graphs that consist of several separate parts, we
can first fully traverse all paths to find which parts exist. Then each subgraph can be sonified.
Note that the first example, which uses the table of connections directly, works the same way
with connected and unconnected graphs.

In general, graph traversal is a well covered problem in computer science, whose results offer
a wide range of possibilities for graph sonification, most of which go far beyond anything
covered here.

10.4.5 Algorithms: Sonifying causal and logical relations

There are cases in which we can represent the result of a process as a simple sequence of
data points, but if we are interested in conditions and causality of processes, these often
become part of what we want to sonify. So far, such causal and logical relations have only
been implicit in the sound (in so far as they may become audible as a result of a successful
sonification), but not explicit in the structure of the experiment. This is the next step to be
taken, and next is shown how the sonification laboratory may provide methods to bring to
the foreground the causal or logical relations between data.

By definition, within a computational system, causal relations are algorithmic relations and
causal processes are computational processes. In a broad understanding, algorithms make up
a reactive or interactive system, which can be described by a formal language. We may also
take algorithms simply as systematic patterns of action. In a more narrow understanding,
algorithms translate inputs via finite steps into definite outcomes.'> Generally, we can say
that — to the same degree that cause and effect are intertwined — algorithms connect one state
and with the other in a specific manner. In such a way, they may serve as a way to represent
natural laws, or definite relations between events. If we know how to sonify algorithms we
have at our disposal the means to sonify data together with their theoretical context.

Up to this point we have already implicitly sonified algorithms: we have used algorithms to
sonify data — they represented something like the transparent medium in which the relation
between measured data points became apparent. It is this medium itself which becomes
central now. This may happen on different levels.

The algorithm itself may be sonified:

1. in terms of its output (we call this effective sonification — treating it as a black box,
equivalent algorithms are the same),

2. in terms of its internal steps (we call this procedural sonification — equivalent algo-
rithms are different if they proceed differently),

3. in terms of the structure of its formal description (see section 10.4.4).

While often intertwined, we may think of different reasons why such a sonification may be
significant:

1. we are interested in its mathematical properties,

15The term algorithm is ambiguous. For a useful discussion, see for instance [10].
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2. it represents some of the assumed causal or logical chains between states of a system,

3. it reproduces some of the expected effects (simulation).

Examples for procedural and effective sonification of algorithms

For a demonstration of the difference between the first two approaches, effective and pro-
cedural sonification, there now follows a very simple example of the Euclidean Algorithm,
which is still today an effective way to calculate the greatest common divisor of two whole
numbers. For this we need only to repeatedly subtract the smaller number from the larger
number or, slightly faster, obtain the rest of integer division (modulo).

In order to hear the relation between the input of the algorithm and its output, we sonify both
the pair of its operands and the greatest common divisor (gcd) thus obtained as a chord of
sine tones. We may call this effective sonification of an algorithm. As we only sonify its
outcome, it should sound the same for different versions and even other algorithms that solve
the same problem.

Two sets of numbers are provided below for whose pairs the gcd is calculated. We use a
random set here. Each pair is presented together with its gcd as a chord of sine tones whose
frequencies in Hertz are derived from a simple mapping function g(z) = 100z, whose offset
guarantees that the lowest value x = 1 corresponds to an audible frequency (100 Hz) (hear
sound example S10.22).

f=1{ la, bl

var t;
while {
b !'=0
PoA
t = b;
b = a mod: b;
a = t;
}i
a
bi
g={ |1l 1 = 100 }; // define a mapping from natural numbers to frequencies.

SynthDef (\x, { |freq = 440, amp = 0.1, sustain = 1.0, out = 0]
var signal = SinOsc.ar (freq) x AmpComp.ir (freqg.max(50));
var env = EnvGen.kr (Env.perc(0.01, sustain, amp), doneAction: 2);
Out.ar (out, signal * env);

}) .add;
Task {
var n = 64;
var a = { rrand (1, 100) } ! n; // a set n random numbers <= 100
var b = { rrand (1, 100) } ! n; // and a second dataset.
n.do { |i]|
var x = al[il, y = bl[i]l;
var gcd = f.value(x, Vy);
var nums = [x, y, gcd].postln; // two operands and the result
var fregs = g.value (nums); // mapped to 3 fregs ...

// in a chord of a sine grains
(instrument: \x, freq: fregs) .play;
0.1.wait;

}.play

©
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1|f =1 la, b, func|

2 var t;

3 while {

4 b !'=0

5 }o{ // return values before b can become 0
6 func.value(a, b, t);

7 t = Db;

8 b = a mod: Db;

9 a = t;

10 };

13| // procedural sonification of the Euclidean algorithm

14| Task {

15 var n = 64;

16 var a = { rrand (1, 100) } ! n; // n random numbers <= 100.
17 var b = { rrand (1, 100) } ! n; // and a second dataset.

18 n.do { |1i]|

19 f.value(alil, blil, { la, bl // pass the

20 var numbers = [a, b].postln;

21 // a 2 note chord of sine grains

22 (instrument: \x, freq: g.value (numbers)) .play;
23 0.1.wait; // halt briefly after each step

24 1)

25 0.5.wait; // longer pause after each pair of operands
26 }

271 }.play;
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To realise a procedural implementation of the same algorithm, we have to access its internal
variables. One way to do this is to evaluate a callback function at each iteration, passing the
intermediate values back to where the gcd algorithm was called from. Within a co-routine
like Task, the function may halt the algorithm for a moment in the middle (here 0.1 s),
sonifying the intermediate steps. In our example, the intermediate gcd values are sonified as
a pair of sine tones (hear sound example S10.23).

bi

Operator based sonification

For the sonification laboratory it is essential to enable the researcher to easily move the
border between measured data and theoretical background, so that tacit assumptions about
either become evident. Integrating data and theory may help to develop both empirical data
collection and the assumed laws that cause coherence. A sonification of a physical law, for
instance, may be done by integrating the formal relations between entities into the sound
generation algorithm (because this effectively maps a domain function to a sonification
function, we call this operator based sonification [26, 30]).

An object falling from great height can, for simplicity, be sonified by assigning the height A to
the frequency of a sine tone (assuming no air resistance and other effects): y(t) = sin(276t),
where the phase 6 = [(ho — gt?)dt. For heights below 40 m, however, this sine wave is
inaudible to the human ear (f < 40 Hz). Also, dependent on gravity, the fall may be too
short. The sonification introduces scalings for appropriate parameter mapping (see section
10.4.2), changing the rate of change (duration) and the scaling of the sine frequency (k) (hear
sound example S10.24).

(

SynthDef (\fall, { |hO = 30, duration = 3, fregScale = 30|
var y, law, integral, g, t, h, freq, phase, k;
g = 9.81; // gravity constant

(S TR SR
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t = Line.ar (0, duration, duration); // advancing time (sec)
law = { |t| g * t.squared }; // Newtonian free fall
integral = { |x| Integrator.ar(x) x SampleDur.ir };

h = hO - law.value(t); // changing height

freqg = (max(h, 0) % fregScale); // stop at bottom, scale
phase = integral. (freq); // calculate sin phase

y = sin(2pi » phase);
// output sound - envelope frees synth when done
Out.ar(0, y % Linen.kr(h > 0, releaseTime:0.1, doneAction:2));
}) .add;
)i

Synth (\fall);

This however causes an ambiguity between values belonging to the sound algorithm sin(k27t f)
and those belonging to the sonification domain hy — gt2. This simple example does not pose
many problems, but for more complex attempts, it can be crucial to formally separate the
domains more clearly.

This problem can be addressed by introducing sonification variables into the formalism
that usually describes the domain. By superscribing variables that belong to the context of
sonification by a ring,' sonification time is therefore distinguished as { from the domain time
variable ¢, and the audio signal y itself can be similarly marked as y. The above example’s
semantics become clearer: §(f) = sin(k2ri [(ho — gt)2dt). All those variables which are
introduced by the sonification are distinguishable, while all terms remain entirely explicit
and do not lose their physical interpretation. For a discussion of sonification variables and
operator based sonification, especially from quantum mechanics, see [30].

Integrating data and theory

For demonstrating how to combine this sonification of a physical law with experimental data,
take a classical example in physics, namely Galileo Galilei’s inclined plane experiment (from
a fragment from 1604), which is classical also in the historiography of sonification. Before
Stillman Drake’s publications in the 1970s [13], it was assumed that Galileo measured time
by means of a water clock. In a previously lost document, Drake surprisingly discovered
evidence for a very different method. According to Drake, Galileo adjusted moveable gut
frets on the inclined plane so that the ball touched them on its way down. These "detectors"
could be moved until a regular rhythm could be heard, despite the accelerating motion of the
ball.'” This experiment has been reconstructed in various versions for didactic purposes, as
well as for historical confirmation [25], [3], partly using adjustable strings or bells instead of
gut frets.

The code below shows a simulation of the inclined plane experiment, in which the law of
gravity (s = gt?), only stated in this form later by Newton, is assumed. A list of distances
(pointsOfTouch) is given at which the "detectors" are attached. Time is mapped as a linear
parameter to the distance of the accelerating ball, and whenever this distance exceeds the

1610 IATEEX, the little ring is written as \mathring{. .. }

"Drake’s [12] more general discussion of Renaissance music provokes the idea of a possible continuity in the
material culture of Mediterranean laboratory equipment: in a sense, this experiment is a remote relative of the
Pythagorean monochord — just as tinkering with the latter allowed the discovery of an invariance in frequency
ratios, the former helped to show the invariance in the law of gravity. At the time, many artists and theorists
were Neopythagoreans, like Galileo’s father [16].
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@) distance of one of the detectors, it is triggered (hear sound example S10.25).

1
2| (

3| Ndef (\x, {

4 var law, g = 9.81, angle;

5 var pointsOfTouch;

6 var ball, time, sound, grid;

7

8| // pointsOfTouch = [1, 2, 3, 5, 8, 13, 21, 34]; // a wrong estimate
9 // typical measured points by Riess et al (multiples of 3.1 cm):
10 pointsOfTouch = [1, 4, 9, 16.1, 25.4, 35.5, 48.5, 63.7] = 0.031;
11

12 angle = 1.9; // inclination of the plane in degrees

13 law = { |t, gravity, angle]|

14 sin(angle / 360 * 2pi) * gravity % squared(t)

15 }i

16

17 // linear "procession" of time:

18 time = Line.ar (0, 60, 60);

19 // distance of ball from origin is a function of time:

20 ball = law.value(time, g, angle);

21

22 sound = pointsOfTouch.collect { |distance, 1]

23 var passedPoint = ball > distance; // 0.0 if false, 1.0 if true
24 // HPZ2: only a change from 0.0 to 1.0 triggers

25 var trigger = HPZ2.ar (passedPoint);

26 // simulate the ball hitting each gut fret

27 Klank.ar (

28 ‘M

29 {exprand (100, 500) } 5,

30 { 1.0.rand } 5,

31 { exprand(0.02, 0.04) } ! 5

32 1,

33 Decay?2.ar (trigger, 0.001, 0.01, PinkNoise.ar (1))

34 )

35 };

36

37 // distribute points of touch in the stereo field from left to right
38 Splay.ar (sound) = 10

39 // optionally, add an acoustic reference grid

40| // + Ringz.ar (HPZ2.ar (ball % (1/4)), 5000, 0.01);

41| }) .play

21)

A slightly richer, but of course historically less accurate variant of the above uses the method
employed by Riess et al., in which it is not the frets that detect the rolling ball, but instrument
@)  strings (hear sound example S10.26).

1| Ndef (\x, {

2 var law, g = 9.81, angle;

3 var pointsOfTouch;

4 var ball, time, sound, grid;

5

6| // pointsOfTouch = [1, 2, 3, 5, 8, 13, 21, 34]; // a wrong estimate
7 // typical measured points by Riess et al (multiples of 3.1 cm):
8 pointsOfTouch = [1, 4, 9, 16.1, 25.4, 35.5, 48.5, 63.7] = 0.031;
9

10 angle = 1.9; // inclination of the plane in degrees

11 law = { |t, gravity, angle]|

12 sin(angle / 360 = 2pi) * gravity % squared(t)

13 }i

14

15 // linear "procession" of time:

16 time = Line.ar (0, 60, 60);

17 // distance of ball from origin is a function of time:

18 ball = law.value(time, g, angle);

19




20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Laboratory Methods for Experimental Sonification 269

sound = pointsOfTouch.collect { |distance, 1i|
var passedPoint = ball > distance; // 0.0 if false, 1.0 if true
// HPZ2: only a change from 0.0 to 1.0 triggers
var trigger = HPZ2.ar (passedPoint);
// using Galileo’s father’s music theory for tone intervals
var freq = 1040 » ((17/18) x* 1);
// simple vibrating string model by comb filter.
CombL.ar (trigger, 0.1, 1/freq, 1.0 + 0.3.rand2)
bi

// distribute points of touch in the stereo field from left to right
Splay.ar (sound) =* 10
// optionally, add an acoustic reference grid
// + Ringz.ar (HPZ2.ar (ball % (1/4)), 5000, 0.01);
}) .play

Discussion

Evaluating the code above with varying settings for pointsOfTouch, and various angles, one
can get an impression of the kind of precision possible in this setup. In a sense, it is much
better suited than a visual reconstruction, because there are no visual clues that could distract
the listening researcher. The whole example may serve as a starting point for quite different
sonifications: it demonstrates how to acoustically relate a set of points with a continuous
function. Replacing the law by another function would be a first step in the direction of an
entirely different model.

As soon as one becomes aware of the fact that we do not only discover correlations in data,
but also tacitly presume them — the border between auditory display and theory turns out
to be porous. Correlations may either hint toward a causality in the domain or simply be
a consequence of an artefact of sonification. Integrating data and theory more explicitly
helps experimentation with this delimitation and the adjustment of it so that the sonification
displays not only itself. The introduction of sonification variables may help both with a better
understanding of the given tacit assumptions and with the task of finding a common language
between disciplines, such as physics, mathematics, and sonification research.

As we have seen, one and the same algorithm gives rise to many different perspectives of
sonification. Separating its "outside" (its effect) from its "inside" (its structure and procedural
behavior) showed two extremes in this intricate spectrum.

Finally, this presentation gives a hint of an interesting way to approach the question "What
do we hear?". Necessarily, we hear a mix of the sonification method and its domain in every
instance. Within the series of sound events in Galileo’s experiment, for instance, we listen to
the device (the frets and their arrangement) just as much as we listen to the law of gravity
that determines the movement of the accelerating ball. Sonification research is interested in
distal cues, outside of its own apparatus (which also produces proximal cues: see section
10.4). We try to hear the domain "through" the method, so to speak. There is an inside and
an outside also to sonification.

Furthermore, data itself may be considered the external effect of an underlying hidden logic
or causality, which is the actual subject of investigation. Unless surface data observation is
sufficient for the task at hand, the "outside" of sonification is also the "inside" of the domain
we are investigating.

Add to this the fact that today’s sonification laboratory consists almost exclusively of algo-
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rithms, which may either be motivated by the sonic method or by the domain theory. Which
"outside" are we finally listening to? How is the structure of the algorithm tied to the structure
of the phenomenon displayed? What we face here is a veritable epistemological knot. This
knot is implicit in the practice of sonification research, and each meaningful auditory display
resolves it in one way or another.

10.5 Coda: back to the drawing board

This chapter has described a range of methods considered essential for a sonification labora-
tory, introduced SuperCollider, a programming language that is well suited for sonification
research in lab conditions, and suggested guidelines for working on sonification designs and
their implementations. This should provide useful orientation and context for developing
appropriate methods for the acoustic perceptualization of knowledge.

However, depending on the domain under exploration, and the data concerned and its
structures, each problem may need adaptations, or even the invention of new methods.
This means a repeated return to the drawing board, revising not only the data, but also
the equipment — calibrating sonification methods, programming interfaces, and discussing
the implications of both approach and results. As sonification research involves multiple
domains and communities, it is essential that all participants develop a vocabulary for
cross-disciplinary communication and exchange; otherwise, the research effort will be less
effective.

A sonification laboratory, being an ecosystem situated between and across various disciplines,
should be capable of being both extremely precise and allowing leeway for rough sketching
and productive errors. It is precisely this half-controlled continuum between purity and dirt
[11] that makes a laboratory a place for discoveries. Doing sonification research means
dealing with large numbers of notes, scribbles, software and implementation versions,
incompatible data formats, and (potentially creative) misunderstandings. The clarity of a
result is not usually present at the outset of this process — typically, the distinction between
fact and artefact happens along the way.

Finally, a note on publishing, archiving and maintaining results: science thrives on generous
open access to information, and the rate of change of computer technology constantly endan-
gers useful working implementations. Sonification laboratory research does well to address
both issues by adopting the traditions of open source software and literate programming.
Publishing one’s results along with the entire code, and documenting that code so clearly that
re-implementations in new contexts become not just possible but actually practical makes
one’s research contributions much more valuable to the community, and will quite likely
increase their lifetime considerably.
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