
<<> and <>> : Two simple operators
for composing processes at runtime

Julian Rohrhuber

1 Abstract

Dynamic rearrangement of synth graphs can be an interesting method to
move from one sound to another and from one idea to the next. It also
implements the common graphical paradigm of “patching”. In analogy
to function composition operator <>, two new operators, <<> and <>>

help to compose running processes of node proxies. This brief paper
gives a few examples how they can be used for sound synthesis.

2 Composing abstract functions

2.1 Function composition

In the SuperCollider language, closures are implemented by the class
Function, which is, just like unit generators, streams, routines and pat-
terns, a subclass of AbstractFunction. Most operators may thus be used
not only for calculating data, but also for composing calculations lazily
– resulting in potentially infinitely long datasets whose components may
even be partially unknown at the time of construction. Such operators
may implement mathematical operations, like +,−, sin, log, or domain
specific ones, like midicps or ampdb. A special operator is the binary
function composition operator <>, which constructs compound functions,1

connecting the second operand’s output with the first operand’s first ar-
gument:

f = { |x| sin(x) + (x * x) };

g = { |x| x * 2pi };

1The sign “<>” within SuperCollider approximates the mathematical sign “◦”: f ◦
g ◦ h, which is equal to f (g(h(x))).

1

h = { |x| x + 1 };

z = f <> g <> h;

The result of the last expression is a function z that calculates the results from the
functions f, g, h, passing its argument first to h, whose output it passes to the input of
g, whose output it passes to f . This can also be written as

z = { |x| f.value(g.value(h.value(x))) };

z = { |x| x = (x + 1 * 2pi); sin(x) + (x * x) }

The advantage of the shortened syntax is that the chain can easily be reordered, and
that it is independent of the functions themselves (topologic semantics). Note that in
the typical implementation, only the first argument is used: for multiple “channels” one
may pass arrays or environments as an argument.

2.2 Pattern composition
In analogy to functions, also patterns and streams may be composed.

a = Pfunc { |x| x * 2 };

b = Pfunc { |x| if(x > 5) { 0 } { 1 } };

c = Pseq((0..6));

z = b <> a <> c;

z.asStream.next(1);

Pattern composition is commonly used with event patterns like Pbind, which pass
an event up and down the chain:

f = Pbind(\freq, Pn(Pshuf([200, 551, 603, 881.3]/2, 16)));

g = Pbind(\dur, Pn(Pshuf([0.3, 0.1, 0.4], 8)));

z = f <> g;

z.play;

3 Composing signals at runtime
The class NodeProxy and its subclass Ndef return placeholders for signal processes on
the server. They connect changes in code with changes in those processes, so that we
can rewrite our synths while listening to their output (2). To combine the output of one
proxy with the unit generator graph of another, one can embed the placeholder directly
by its name:

Ndef(\a, { Dust.ar(8 ! 2) });

Ndef(\b, { Ringz.ar(Ndef.ar(\a), Dust.kr.lag(1) * 800 + 600, 0.3) });

Ndef(\c, { HPF.ar(CombL.ar(Ndef.ar(\a)), 8000) + Ndef(\b) });

Ndef(\c).play;

2

However convenient, this can be a problem in certain cases: in order to reroute the
signal flow one needs to modify the structure that receives it.2 In many cases, it may be
better to ignore the internal usage and just try out different external routings. Optimally,
the shift of focus between external and internal perspectives should be fluent.

Since the more recent introduction of audio rate routing in SuperCollider, we may
now use the open sound control message /n mapa to connect different sources. Usually
this is done by mapping audio rate buses to audio rate control names, which involves
three types of entities explicitly: SynthDef, Synth and Bus. Instead, in analogy to func-
tion composition, one can also directly rearrange instances of NodeProxy or Ndef into
different signal chains.3

The new binary operator introduced here makes some differences to usual function
composition semantics:

• Unlike function composition, this composition doesn’t return a new object, but in-
stead passes the signal through one of its operands at runtime (it is an imperative
operator).

• To maintain this difference, and also to allow for both directions of linking, the
new operator symbols <<> (right to left) and <>> (left to right) are introduced.

• As there is no default input for synths, the control name in is assumed.

• To link other inputs, an adverb may be used: <<> .x links to the x control,
<<> . f req to the f req control.

Analogously to the lazy initialisation in NodeProxy, if no rate and number of chan-
nels is given in the operands, they are initialised (we assume that audio rate in stereo is
the default here4).

Ndef(\y) <<> Ndef(\b) <<> Ndef(\x);

Ndef(\y).play;

This creates an empty (silent) stereo audio rate chain, which can be filled with ugen
functions later:

Ndef(\y, { \in.ar(0 ! 2) });

Ndef(\x, { Dust.ar(5 ! 2) });

Ndef(\b, { Ringz.ar(\in.ar(0 ! 2), LFNoise1.kr(0.1).range(550, 700), 0.2).distort });

Sending the message ar directly to a symbol (passing the number of channels as
argument) is a convenient way to write an audio rate input control name within a UGen
graph in a SynthDef or a NodeProxy/Ndef:

\in.ar([0, 0]) or: \in.ar(0 ! 2)

2In the above case, for example, in order to rout Ndef(\b) into the CombL of Ndef(\c),
we have to replace Ndef.ar(\a) by Ndef.ar(\b) in the code.

3This method is somewhat similar to sequential signal composition in the block-
diagram algebra of the Faust programming language, which uses the notation a : b for
the similar constellation (1).

4The default channel sizes may be set in a class variable of NodeProxy.

3

We can thereby build up line by line (in arbitrary order) a generic series of chain
links which may be recombined at runtime:

// define a few chain links

Ndef(\comb, { CombL.ar(\in.ar(0 ! 2), 0.1, LFNoise1.kr(0.1).range(0, 0.1), 2) });

Ndef(\ring, { Ringz.ar(\in.ar(0 ! 2), LFNoise1.kr(0.1).range(550, 700), 0.2).distort });

Ndef(\filt, { RLPF.ar(\in.ar(0 ! 2), LFNoise1.kr(0.1).range(300, 7000), 0.1) });

Ndef(\dust, { Dust.ar(5 ! 2) });

Ndef(\y, { \in.ar(0 ! 2) });

// play back one of them

Ndef(\y).play;

// different combinations

Ndef(\y) <<> Ndef(\dust);

Ndef(\y) <<> Ndef(\ring) <<> Ndef(\dust);

Ndef(\y) <<> Ndef(\ring) <<> Ndef(\comb) <<> Ndef(\dust);

Ndef(\y) <<> Ndef(\ring) <<> Ndef(\comb) <<> Ndef(\filt) <<> Ndef(\dust);

// the above written in the opposite direction

Ndef(\dust) <>> Ndef(\filt) <>> Ndef(\ring) <>> Ndef(\comb) <>> Ndef(\y);

The unmap message or linking it to nil removes an Ndef from the chain. The method
orderNodes allows the synth order to be enforced (for instance when an external audio
signal requires minimal delays).

4

All these reconfigurations are done at runtime, at the same time, the content of the
nodes may also be reprogrammed. Using different crossfade times (using the message
fadeTime) for each node can be an interesting aspect of including this process in the
unfolding of a musical performance.

Also, both operands may be the same – within the timing constraints of the audio
processing block size (ca. 1.3 ms in the default setup), signals can be fed back to a part
of their source: here, the sound output re-enters as a phase of the sine oscillator that
produces it.5

Ndef(\z, {

SinOsc.ar(

LFNoise0.kr(12 ! 2, 100, 400),

\in.ar(0 ! 2) * 1.5

) * LFNoise0.kr(4 ! 2).max(0)

});

Ndef(\z).play;

Ndef(\z) <<> Ndef(\z);

Finally, a brief example of how to use adverbs. Adverbs are additional specifications
of how a binary operator is to be applied – in other words, the adverb describes how
the verb (operator) affects the nouns (operands). In SuperCollider, they are written as a
string that comes after the operator, separated by a dot.

The following creates two single channel control rate inputs x and y which are
mapped to two instances of Ndef reading the current cursor position.

Ndef(\comb, {

CombL.ar(

\in.ar([0, 0]),

0.1,

LFDNoise1.kr(\x.kr(0.1)).range(0, 0.1),

\y.kr(2)

)

});

Ndef(\mod1, { MouseX.kr(0.01, 100, 1) });

Ndef(\mod2, { MouseY.kr(0.01, 100, 1) });

Ndef(\comb) <<>.x Ndef(\mod1);

Ndef(\comb) <<>.y Ndef(\mod2);

References
[1] Y. Orlarey, D. Fober, and S. Letz. Syntactical and semantical aspects of Faust. Soft

Computing-A Fusion of Foundations, Methodologies and Applications, 8(9):623–632, 2004.

5Thanks to Alberto de Campo for the example and a number of other useful sugges-
tions.

5

[2] Julian Rohrhuber, Alberto de Campo, and Renate Wieser. Algorithms today - Notes
on Language Design for Just In Time Programming. In Proceedings of International
Computer Music Conference, pages 455–458, Barcelona, 2005. ICMC.

6

