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Rainer Schütz, Julian Rohrhuber 
 

Listening to Theory. An Introduction to the  
Virtual Gamelan Graz Framework1 

 
 
Introduction 
 
 One of the results of the project Virtual Gamelan Graz is a framework for 
experimenting with rule-based models that aim at generating the sound of a ba-
sic central Javanese gamelan-ensemble playing gendhing (≈ ‘gamelan-composi-
tion’2) by evaluating balungan-notation (lit. ‘skeleton’, ≈ ‘core melody’). Here, 
we shall give an introduction to ideas and principles underlying this framework.3 
On the technical side, we try to be helpful to readers who are not at home in the 
world of computer music. Conversely, as the system intends to be a research 
environment for central Javanese gamelan music, we try to provide some back-
ground information on the music where it seems necessary to understand deci-
sions made in the implementation. For the novice reader it might be helpful to 
seek complementary information in the glossary of Javanese musical terms.4  

                                                 
1  We would like to thank our colleagues from the VGG project and the participants of the sym-
posium for their valuable input. Additional thanks go to Alberto de Campo for advice and help 
with the implementation and to Jesse Snyder for his hard work on the final draft. 
2  Translations or short paraphrases are not given to do justice to the translated term but to give 
those unfamiliar with Javanese music a rough idea of the concept referred to. If a term appears 
untranslatable, a brief English explanation, preceded by ‘≈’, is given that fits the context (e.g. 
irama (≈ ‘speed/subdivision level’)). If a term is not well understood or its meaning disputed, but 
the literal translation appears helpful, the translation is preceded by ‘lit.’ (E.g. kalimat lagu lit. 
‘tune sentence’) 
3  It should be noted that, being part of ongoing research, its current state (mid 2008) is still in 
flow. However, its architecture has proven to be reliable and extendible, so that we consider it a 
valuable prototype. 
4  There are quite a few general introductions to Javanese gamelan-music available. Among them 
Sorrell (2000) is well accessible, Pickvance (2005) contains an encyclopedic wealth of informa-
tion, and Brinner (2008) offers a course book with accompanying audio-CD that makes sure to 
present the music in its cultural embedding. 
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 The VGG implementation is written in SuperCollider 3 (SC3)5, an advanced 
audio-synthesis programming environment with a rich feature-set in the domain 
of algorithmic composition. Combining abstraction and reasonable simplicity 
with the efficiency of a real-time synthesis system, SC3 is a computer language 
that is becoming increasingly common in computer music and sound research. 
While the VGG implementation provides graphical user interfaces such as editor 
and player for sound synthesis, the main interface for user interaction remains 
textual. The programming environment is not a hidden layer that produces a 
finished application that the user is bound to, but rather an accessible and central 
element of the system. We try to provide both a number of small, simple and 
open user interface elements for specific tasks, as well as a programming envi-
ronment that permits to read and modify the program itself.  
 Over the last four decades, a great number of approaches have been devised 
of how to handle the programming process, with the result that the act of pro-
gramming itself has repeatedly become the subject of computer science. Maybe 
the most interesting in our present context are the paradigm of literate pro-
gramming, and methods of interactive programming. Literate programming 
emphasizes the integration of program text and scientific documentation, with a 
strong emphasis on the readability of the code itself (Iverson 1979, Knuth 1992). 
While still formal, code is comparatively close to a human readable text, com-
bining description with computation. Moreover, such an approach emphasizes 
the ability to extend the language in such a way that its vocabulary remains 
meaningful within the research domain. Here, it follows a strategy that has 
evolved within computer language design: instead of keeping two accounts, one 
being a description of a system, the other its technical implementation, one may 
integrate the modeling process in a single, sufficiently descriptive programming 
language (Meyer 2000). A computer language then serves both as a knowledge 
representation system and as an active experimental context that allows to reason 
about the implications of this knowledge. In the case of VGG, this allows us to 
unify a description of assumptions about musical performance and competence 
                                                 
5  SuperCollider was developed by James McCartney and is a GPL-licensed open source applica-
tion, now actively maintained by its author and a lively community. More information on SC3 is 
available on James McCartney’s site (http://www.audiosynth.com/) and the project-homepage on 
Sourceforge: http://supercollider.sourceforge.net/. The VGG implementation was developed on 
OS-X 10.4. Since SuperCollider-versions for Linux and Windows have come a long way towards 
cross-platform compatibility in 2008 it should not be difficult to adjust the VGG implementation 
to run on both platforms. 
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with a system that realizes these assumptions in a form which one can listen to. 
The same program text has two audiences: the human reader and the machine.  
 A system for interactive programming, on the other hand, is structured as to 
allow the rewriting and reassembly of any significant part of the program while 
it is running. Thus, the programming language is not just the technical means to 
finally implement an already existing model, but also a part of an experimental 
and iterative process. It extends the idea of the integration of knowledge and 
computation by the concept of interactive writing. Although interactive pro-
gramming is a method in the sciences at least since the late 1960s 
(Klerer/Reinfelds 1968), its implications are still under active research. The Su-
perCollider language incorporates the outcome of these efforts to provide a suit-
able environment for computer experiments (Rohrhuber/De Campo 2008; Rohr-
huber/De Campo/Wieser 2005). 
 These two paradigms, literate and interactive programming, underlie many 
basic design decisions in VGG. As a consequence, the development cycle is 
fairly short, and on-the-fly changes can generally be listened to immediately. 
Maybe the most obvious influence of literate programming in the VGG imple-
mentation is the extensive use of nested name spaces (using dictionaries, 
see p. 140), often including Javanese terminology. Although this makes the pro-
gram text less accessible to non-expert readers, we have chosen to give prefer-
ence to the richness and semantic descriptiveness of Javanese terms. Replacing 
laras by ‘tuning system’, pathet by ‘tonal mode’, garap by 'part generation' or 
tafsiran by ‘derivation’ would have made the text appear more understandable to 
most Western readers, but would have also veered away from the specifics of the 
music we try to describe. Furthermore a concept like irama (≈ ‘speed/subdivi-
sion-level’, see p. 154) does not have an equivalent in English, and it seems 
impossible to find a compact term that would reflect all the musical facets that 
contribute to its meaning. It should be noted though, that we don't want to give 
the impression that we claim this implementation could offer a general and rich 
description of the Javanese terms it employs. It can only do so within the spe-
cific context of the given system. As such, it may be part of a process of rea-
soning about Javanese music and may complement existing means of descrip-
tion. 
 We hope that the VGG implementation – written within an entirely open 
framework that gives access to all its layers – will prove a useful means of ex-
changing views on gamelan-music by experimenting with the model itself. Be-
cause within the culture of the ethnomusicological community it is not common 
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to express thoughts about music in an audio-synthesis programming language, 
we think that an introduction from a basic user perspective is warranted here.  
 In the following, we will give an overview of different aspects of the system, 
starting with notation and knowledge representation, and a brief introduction of 
essential concepts of the language SuperCollider. From there, we use a case 
study as a means of illustrating the components required to model a gendhing, 
and to give a basic account of the inner logic of the framework. Research ques-
tions arising from the modeling of basic aspects of gamelan music, such as 
irama, pathet, part generation, and interaction are considered in the light of a 
concrete implementation. Finally, we describe main features of the sound syn-
thesis system that allows users to apply formal tonal patterns to different kinds 
of gamelan sounds. 
 
 
Notation and knowledge representation 
 
 Musical notation 
 
 The VGG framework attempts to allow gamelan experts to model musical 
patterns using an already familiar notation: the Kepatihan-style cipher notation. 
Kepatihan has become the quasi-standard of notation of Javanese gamelan mu-
sic.6 This is not a trivial task, because in most systems executable programming 
code cannot contain non-standard symbols, which occur frequently in Kepati-
han.7 Although this required making some compromises, simple patterns will 
still look quite familiar to those familiar with Kepatihan, and it should not be too 
difficult to get accustomed to the special features of the VGG derivative: 
                                                 
6  Kunst (31973, vol. 1:346ff and illustrations in Appendix 3, vol. 2) gives an overview of early 
experiments with musical notation in Java, mainly at the courts of Yogyakarta and Surakarta in the 
early 20th century. In the second half of the 20th century the Kepatihan-style cipher-notation 
became the almost exclusive means of musical notation, broadly established both in musical prac-
tice and teaching. It was developed by musicians at the court of the prime minister (patih, thus 
kepatihan for the court) of Solo (Warsadiningrat 1987:165) and is strongly inspired by the notation 
used in the Galin-Paris-Chevé method (Bullen 1877) of teaching music. 
7  It would be technically more appropriate to say that available means of reproducing Kepati-
han-style notation in a computer-system are a) not standardized, b) use character code-points from 
the extended ASCII-set that easily conflict with editors in programming languages, are difficult to 
access from keyboards, and behave differently on different platforms, and c) have a display ori-
ented logic of employing rhythm markers that can be difficult to interpret by an algorithm. 
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Table 1: Comparison of Kepatihan- and VGG-style notation for simple tone succes-
sions (middle, lower and higher octave-register, no rhythmical distinctions) and 
trans-notation with western musical symbols8. 
 

Kepatihan 6532 2uty @#@7 
VGG 6532 27.5.6. 2'3'2'7 

Staff-notation  
 

 

 
 The variant developed for VGG is a superset of the diacritical notation intro-
duced in Barry Drummond's edition of gendhing.9 The notational conventions 
his system introduced make it possible to query gendhing phrases within in a 
web-browser, and therefore must restrict themselves to a basic set of symbols 
readily accessible from the keyboard in all browsers on all computer-systems. 
There are two systematic differences between standard Kepatihan notation and 
both the Drummond system and the VGG derivative: 

                                                 
8  Trans-notation to western staff notation is occasionally offered to allow a reader unfamiliar 
with Kepatihan-style cipher-notation to grasp a few of its basic properties at a glance, although 
many implications of western notation (e.g. pitch-representation) are highly misleading. In Kepati-
han notation there are 7 ciphers designating tone steps (originally instrumental keys) within one of 
two tuning systems (sléndro and pélog). Rising ciphers refer to rising pitch and dots below and 
above ciphers refer to octave register. A cipher also stands for one basic rhythmic unit, which 
could be fast or slow, depending on performance context. There are horizontal rhythm-bars above 
ciphers for even rhythmic subdivision and a prolongation dot, the rhythmic value of which equals 
that of a tone-cipher in the same context. Tone-steps could be small (between half- and full tone), 
middle-sized (between major second and minor third) or large (between minor and major third), 
depending both on the respective tuning system and the step-position within the tuning system. 
Instrumental tunings may be considered as comparatively flexible, adding another layer to pitch-
flexibility in Javanese music. In lack of melodic context the given examples are metrically indis-
tinct, yet an isorhythmic group of four basic beats is usually understood as being end-weighted. 
End-weighted 4-beat groups (gatra) are often separated by whitespace to enhance legibility. 
9  Gendhing Jawa - Javanese Gamelan Notation: http://muse.calarts.edu/~drummond/-
gendhing.html, in particular Gendhing Search: http://muse.calarts.edu/~drummond/ 
search2.html  
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• In standard Kepatihan-notation octave-dots and rhythm-bars display 
above or below their tone-cipher, in the VGG derivative all diacritics follow 
their tone-cipher in a fixed order. 

• In order to express rhythmic values shorter than the basic beat, standard 
Kepatihan-notation groups symbols in (nestable) subdivision-pairs (tone ci-
phers and the prolongation dot pin). In the VGG derivative there is no such 
grouping. Instead, each tone-cipher (or pin) is followed by its own set of dia-
critical markers. 

 
The diacritics themselves were chosen from the lower ASCII set: 
 
Table 2 Diacritics for octave register and rhythmical values in VGG-style notation 
 

Diacritic Description Meaning Comment 

' single apostro-
phe higher octave  

. period lower octave  

: colon middle octave (explicit) facultative 

- minus prolongation called pin 

_ underscore single subdivision (half)  

= equals double subdivision (quarter)  

| vertical line no subdivision (explicit) facultative 
 
 By convention, octave diacritics precede rhythmical diacritics. In both tradi-
tional Kepatihan notation and the VGG derivative tone-ciphers (1 to 7) and the 
prolongation-symbol pin implicitly carry the basic relative duration 1, some-
times called sabet (≈ 'beat', lit. 'whip') in Java. Tone-ciphers and pin together add 
up to the intended duration, while the subdivision diacritics modify the immedi-
ately preceding symbol. Subdivision takes precedence over duration totaling: 
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Table 3 Examples of rhythmical symbols in VGG notation 
 

Example Octave and tone Relative duration 

1-- middle 1 3 

1'= high 1 0.25 

1.-_ low 1 1.5 

7.--_ low 7 2.5 
 
Examples in context: 
 
Table 4 Examples of Kepatihan balungan notation with rhythmical diacritics, their 
equivalent in the VGG derivative and trans-notation of the rhythmical values. 
 

Kepatihan j.!j6!j253. k.5k6!j@#! 
VGG -_1'_6_1'_2_5_3- -=5=6=1'=2'_3'_1' 

Rhythm in staff-nota-
tion   
 
 Kepatihan style notation is in general use for balungan and has also been 
adapted to other components of gamelan performance, mainly at arts education 
institutions in Java. Two-voice parts are usually written on two lines. Native to 
SC3 is the convention to write simultaneous intervals and chords in brackets. 
Thus the expression "[2.|2:|]" represents low and (explicit) middle 2 sounding 
together, each tone with the same duration 1 (explicit). Two-voice parts thus 
look substantially different in the VGG derivative: 
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Table 5 A basic version of a céngkok (≈ 'pattern', lit. 'kind, style') for gendèr barung 
leading to goal-tone 2, in Kepatihan notation, the VGG derivative and western staff 
notation. The VGG notation exemplifies the special notational convention of writing 
simultaneous tones in brackets. 
 

Kepatihan 
7 @ 7 .   7 @ 7 #   . @ . #   . @ 7 6 
. . u 2   3 u 2 y   . u y u   2 3 j532 

VGG  "72'[77.]2[37][7.2'][27][6.-3'-] 
  [7.2'-]6.[7.3'-]2[32'][5_7]3_[26]" 

Staff-no-
tation 

 
 
 Basic drumming notation is also fairly standardized in Solo. As we are not 
dealing with tone-succession, but with sounds resulting from strokes on drum-
heads in different positions and with different technique, the Kepatihan-style 
ciphers cannot be used. Drumming sounds are represented with a different set of 
symbols. VGG uses a variant of these symbols, with capitals for the large drum 
kendhang gendhing and lower case letters for the small ketipung and middle 
sized ciblon. 
 
Table 6: Short fragment of basic drumming (kendhangan) for the genre ladrang, 
illustrating differences and similarities between drumming notation common in 
Solo and VGG. The trans-notation indicates a separation between core-sounds 
(thung P and dhah B) and the filler (thong O). 
 

Solonese OOPB OPBO PBjOPO BOPB 
VGG oopB opBo pBo_p_o BopB 

Staff-notation
thong

thung
dhah
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 From notes to events: situating assumptions on musical knowledge 
 
 VGG converts character sequences (Strings10) written in this notation to 
the program-internal representation of event lists. Hereby, each note is 
represented by an event, which, as we will see, is a more general, explicit and 
extendible internal representation than strings. For the person writing or reading 
a musical score, the notation systems described above are frequently more 
concise and expressive. However, in some cases this method of representation 
can become limiting, because masking off the complexity of the internal system 
also hides its richness and reduces the accessibility of potentially useful features. 

                                                

 In a way, this trade-off is closely related to the frequently discussed weakness 
of any notational representation compared to the complexity and variability of 
real world music. By aiming at incorporating Kepatihan-style notation into VGG 
we also inherit its constraints. Let us say first that users are not bound to the use 
of the VGG notation, the internal representation can always be used at any place 
were Kepatihan-notation can be used. However, all static notational representa-
tions of musical events share intrinsic limitations which cannot be overcome by 
increasing the complexity of the system. Perhaps more interestingly, we found 
that some of these shortcomings are alleviated if notation is used within the dy-
namic framework of an audio-synthesis application. Kepatihan-style notation is 
not explicit when it comes to tuning, loudness and agogic flexibility. Expressing 
pattern variability in written form is cumbersome at best, and communication 
processes during performance are necessarily ignored by the logic inherent in a 
static visual representation of sound-structures. Yet this does not necessarily 
mean that the musical structures represented in musical notation lack all musical 
significance; they might still aptly represent a vocabulary used by communicat-
ing musicians in context.  
 As we will see once we have gained an overview of the framework, VGG 
embeds notational information in a much more situation-dependent system of 
rules. The internal representation of notes, the event, acts as a dynamic medium 
in which knowledge can be captured incrementally. As a result, we are able to 
represent musical knowledge both within a specific set of competences and in 
the context of a given moment.  

 
10  SC3 class-names or code-examples are typographically marked by using a fixed-width font. 
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 Generative principles in VGG aim to be as generic as possible. The goal is 
not to reproduce a specific performance statically with maximum precision. In-
stead, we attempt to model the general principles common to many perform-
ances while leading to different results in individual performances. We don’t 
consider essential aspects like variability, agogic fluctuation and interaction as 
obstructions to using notation, but rather as complements, operating on different 
levels that jointly contribute to the manifestation of music as a product of cultur-
ally bound human activity. An audio-synthesis application like SC3 provides 
means both to model generic operational principles like variability and interac-
tion and to store static patterns in data structures of theoretically any required 
degree of complexity. So rather than avoiding the use of notation we anticipate a 
process in which a symbolic system for the representation of static patterns con-
tinuously develops to complement the dynamic processes in which they are em-
bedded in a more adequate manner. Requirements of the VGG implementation 
have already led to modifications to the initial set of symbols. As a starting point 
for a symbolic system used to store static data within the VGG framework we 
consider Kepatihan-style notation, which has evolved within the music-culture 
we are exploring as the most appropriate option. 
 
 
SuperCollider lingo 
 
 Dictionaries and event-streams 
 
 Resembling a taxonomy tree, a Dictionary is a data structure that allows us 
to organize contextual information flexibly and to use meaningful category 
names in the system implementation itself. By means of nested key-value pairs, 
we may represent data in a way that maintains their specific frames of reference. 
For instance, the levels of a dictionary containing the balungan of gendhing 
could be pathet (≈ ‘tonal mode’), form, name and segments:  
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Figure 1: Structure of a dictionary containing balungan notation of gendhing, 
exemplified for Ladrang “Wilujeng”, pélog pathet barang 
 

gendhing

pathet: p7

form: ladrang

name: wilujeng

segment: buka

segment: ompak

segment: ngelik  
 
This dictionary, together with values for the lowest-level keys would look like 
this in SC3 code: 
 
Figure 2: Dictionary entry for Ladrang “Wilujeng” pélog pathet barang. Subordina-
tion is encoded by nested parentheses, coordinated entries are separated by com-
mas 
 
( 
 gendhing: ( 
  p7: ( 
   ladrang: ( 
    wilujeng: ( 
     buka: "7.32 6.7.23 7.7.32 - 7.5.6.", 
     ompak: "27.23 27.5.6. 33-- 6532 5653 27.5.6.  
        27.23 27.5.6", 
     ngelik: "--6- 7576 3567 6532 66-- 7576 7732  
         –7.5.6." 
               ) 
                ) 
           ) 
         ) 
) 
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 The segments could be further subdivided into subsegments, or generally 
speaking, there is no limit to the branching depth of dictionaries, the hierarchical 
structure may be freely adjusted to descriptive requirements. 
 The internal representation of a sound-event in SC3 is also structured as 
dictionary. For example, the notation-parser could convert tone 6. to the follow-
ing representation: 
 
Figure 3: Tone 6. in a very basic event-representation 
 

( 
degree: 6, 
  dur: 1,  
  octave: 4 
); 

 
 In dictionaries, the order of items within a hierarchy-level is not fixed. 
Querying a dictionary, we cannot rely on the order of items, but instead, the key 
is used to retrieve a specific value. In situations where a fixed order is essential, 
we can use arrays, which are enclosed in brackets. The tone-sequence 27.5.6. 
would look like this: 
 
Figure 4: Basic representation for the tone-sequence 27.5.6. The event-dictionaries 
have a fixed order and are thus enclosed in brackets. 
 

[ 
(degree: 2, dur: 1, octave: 5), 
(degree: 7, dur: 1, octave: 4), 
(degree: 5, dur: 1, octave: 4), 
(degree: 6, dur: 1, octave: 4) 
] 

 
 If we use this array of dictionaries for sound synthesis (which would assume 
a lot of additional data not shown here) it would usually result in a sequence of 
four tones. If played with gamelan sounds, at a reasonable speed and with a pé-
log tuning, a competent listener might already interpret it as a meaningful musi-
cal segment: one (end-weighted) gatra of balungan in pélog barang leading to 
the goal tone low 6. The listener might associate pieces where this pattern occurs 
and other parts that paraphrase the tone-sequence. Conversely, a listener not 
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accustomed to this music might construct a beat at the beginning, consider the 
tuning as awkward and have none of the associations mentioned above. The 
computer system knows nothing of the meaning this sound sequence obtains in 
the mind of listeners. As our aim is to model musical competence within central 
Javanese gamelan music, we have to add such information to the physical sound-
information in order to be able to reason about and operate with all the associa-
tions sound creates in the competent listener. To make it available for evaluation 
and experiment, we have to make such implicit knowledge explicit within the 
system. Event-dictionaries in SC3 are not limited to physical sound parameters, 
in fact they are not limited to anything given by the system, they are freely ex-
tendable by user-defined data, provided it can be represented in the form ‘key: 
value’. This could be numerical data as well as lexical data and data-type names, 
enabling semantic criteria to be translated into actions in the processing of event-
streams. 
 
 Classes and objects, patterns and streams 
 
 The system is specified in the form of so-called classes, which are general 
descriptions of objects; little specialized and encapsulated programs that conduct 
certain tasks required in a specific context. A class acts as a template, defining 
the characteristics and behavior of objects derived from it. For instance, each of 
the above event-dictionaries is an object. The class Event defines their common 
behavior (for example that they contain key-value pairs). Each class can be used 
to create multiple independent objects. The VGG implementation comes with 
many classes tailored to specific aspects of central Javanese gamelan music. 
Their names were chosen to be recognizable: either English terms, or – if the 
musical concept encapsulated therein appeared specific to Javanese gamelan-
music – in Javanese terms. 
 A stream is a specific kind of object for generating or modifying other ob-
jects dynamically. So in order to create a sequence of event objects, we do not 
need to write them out individually, but may instead provide a rule that gener-
ates them. This also means that the sequence need not be known in advance, and 
that it may be defined as never-ending. The internal dynamic behavior of the 
VGG system is determined by numerous such streams which incrementally gen-
erate and modify sequences of events. Because one often needs multiple inde-
pendent variants of the same stream, there is a way to describe streams in the 
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abstract: this is what is called a Pattern11. Thus, from a single pattern multiple 
event streams may be created, and thus multiple melodic lines. The system re-
mains open to parallelization at all times. Additionally, since one pattern may 
derive from another pattern, this strategy is very useful to express how one 
stream modifies or depends on the output of another stream. In particular, one 
may think of an event pattern as an abstract description of a dynamic process 
that generates a sequence of event-dictionaries.  
 Since one of the aims of VGG is to give explicit access to assumptions about 
competences deemed necessary for successful music performance, patterns are 
an appropriate way to structure such a system. The pattern Pgongan e.g. keeps 
track of the current position of a performance relative to the main formal and 
implicitly metrical unit of central Javanese gamelan music, the gongan-period. It 
adds orientational properties to each event within an event-stream. After being 
processed by Pgongan, the event-stream from above could look like this: 
 
Figure 5: Event-stream notation for 27.5.6. after being processed by a stream de-
fined by a Pgongan. 
 

(degree: 2, dur: 1, octave: 5, gonganDur: 32, 
gonganPhase: 4, sabet: 5) 

(degree: 7, dur: 1, octave: 4, gonganDur: 32, 
gonganPhase: 5, sabet: 6) 

(degree: 5, dur: 1, octave: 4, gonganDur: 32, 
gonganPhase: 6, sabet: 7) 

(degree: 6, dur: 1, octave: 4, gonganDur: 32, 
gonganPhase: 7, sabet: 8) 

 
 These orientational properties express elements of contextual knowledge. For 
example, they are required in order to define positions where activities like 
speed changes should start or end. By serving as disambiguating properties or 
constraints, they also become meaningful in the generation of parts. 

                                                 
11  Unfortunately the dynamic, operational understanding of the word ‘pattern’ within SC3 col-
lides with the musicological use of pattern as a static tone- or sound-sequence. A pattern within 
SC3 is static only insofar as it is a description of a generator for a sequence (a stream); this stream 
itself may vary, while its description, the pattern itself, remains outside of time. We have to ask the 
reader to rely on the context to identify the current use-mode of the word.  
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 Step by step, on their path through the system, the event-dictionaries passed 
between streams accumulate specific additional information, such as their pa-
thet, the current irama or the instrument they are meant to be played on. From a 
conceptual point of view, each of them represents a sound event, including tem-
poral parameters such as the sound's duration and the inter-onset time (dur). 
This is the reason why such dictionaries are called events, despite the fact that 
they may represent events that never happen, or events that are combined to later 
form one composite event. The VGG implementation is strongly based on the 
event-stream model of SC3. We thus may consider the basic entity of the system 
to be series of events, representing temporally ordered sets of sounds, or more 
generally, the musical knowledge about such sounds. This has two essential 
implications: a) we are in full control of the properties we want to add to a 
sound-event because we are free to define custom properties using any termino-
logical paradigm required, and b) each event is autonomous, it contains its own 
complete set of properties that describe its sound. 
 In short, playing a piece in such a framework basically means letting the 
notation-parser create an initial basic event-stream from balungan and, by ap-
plying patterns that may add or modify properties, creating further streams. Ad-
ditional patterns can define operations relative to the modified patterns or to the 
same input pattern (branching, parallelization). The streams derived from these 
patterns will be modified accordingly. The concurrent event-streams resulting 
from chaining and branching can subsequently be processed independently. This 
allows the larger system to maintain independent bundles of event-properties to 
be localized – and situated – in different streams of events (see fig. 6). 
 Streams represent a lazy computation scheme, meaning they may operate 
incrementally – a stream need not wait until its input stream finishes processing 
its entire sequence. Instead of this, streams receive one event at a time and pass 
it on, as soon as it has been processed, which usually is much faster than the 
duration of the sound event itself. Therefore many streams can operate within 
the timeframe given by the effective duration of an event. In some cases, this 
basic one-in and one-out logic is complicated by the fact that streams have to 
evaluate more than a single event in order to process the current event. Then, 
one of the stream nodes has to accumulate a number of events by computing a 
little bit ahead of time. 
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Figure 6: Schematic illustration of the branching of event-streams caused by apply-
ing patterns to them. An initial basic stream is created from Kepatihan notation. 
Patterns describe streams that modify the input stream and create a new one. A 
single pattern can serve as basis for several derived patterns (pattern B and C from 
pattern A). The resulting streams B and C share properties of the basic stream and 
stream A, but contain separate properties described by patterns B and C respec-
tively. All 4 streams remain available to the system. 
 

basic event-
stream

notation-parser

mod. event-
stream A

pattern A

mod. event-
stream C

mod. event-
stream B

pattern B
pattern C

27.23 27.5.6. 33-- ...

 
 

 Generally, realtime processing is mandatory for two features of the system: to 
allow a user to interfere with the ongoing sound – which therefore must not be 
predetermined too far ahead – and to model interaction among musicians, which 
can also interfere with the default progression of a performance at any moment. 
This can require tight timeframes between recognition and reaction. Given the 
importance of anticipation in music praxis, it can be hardly surprising to en-
counter contradictions between different levels of adaptive behavior. A stream 
may need to look ahead to what comes in the future of its input stream, while a 
choice predicated upon such an ‘expectation’ may preclude a reaction to a sud-
den change from the outside. This tension is not merely an artifact of the tech-
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nology; it is partially a reflection of a similar tension within the realm of ga-
melan performance practice. As such, it is an interesting area for realtime explo-
ration and experimentation, even if such experimentation demonstrates that 
“realtime” is not as real as one would maybe like it to be. 
 
 Tags 
 
 Let’s consider the basic units for adding to the flow of events in the system. 
Events and dictionaries, which here mainly differ in usage and not in functional-
ity, are composed of simple associations between keys and values. What we call 
tags are quasi-lexical units represented as a key-value pair 'symbol: Boolean' 
(e.g. goToNgelik: true) which can be fed into an event-stream. This means 
that they become a property of each event in their stream. Tags can be set and 
removed in realtime and become localized in time by the events they are bound 
to. As tags are encapsulated in their respective event-stream, concurrent streams 
(like different parts playing together) can contain different sets of tags, but may 
also share them. Setting tags in realtime typically happens in one of two ways: 
either as a result of external intervention or by actions specified by musical pat-
terns, for example to trigger change in the program flow conditionally. As a 
convention, we therefore distinguish external- and internal tags. 
 External tags operate indirectly. Rather than triggering a ‘switch to ngelik’, or 
a set of activities necessary to ‘end a piece’ directly, they only trigger the first 
musical signal that initiates the larger process. The next step is triggered by the 
recognition of the musical signal in a pattern called Preact, which in turn could 
trigger more signals by the means of internal tags. The external tag thus resem-
bles the decision of a musician responsible to initialize a change, leading to a 
musical signal that propagates to other musicians. External tags are preceded by 
the prefix mc12 (Figure 7). The most common external tags can also be set in a 
simple graphical user interface for playback . 
 

                                                 
12  Abbreviation of ‘master of ceremonies’, inspired by the MC [emsi] at Javanese weddings. 
External tags could also be seen as representing outside requests. Bp Emsi ('Mr. MC') has gained 
some notoriety among musicians for making difficult requests, and for overriding their decisions 
in order to adjust the performance to unexpected ceremonial developments, or to expose his capa-
bilities as singer, comedian or the like. 
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Figure 7: Examples of the syntax used to set and unset tags manually 
 

event-stream.tagable.tag = (mcGoToNgelik: true); 
event-stream.tagable.tag = (mcDoSuwuk: true); 
event-stream.tagable.tag = (mcGoToNgelik: false); 
event-stream.tagable.tag = (mcDoSuwuk: false); 

 
 Internal tags are the result either of pattern-recognition or of another type of 
evaluation of the flow of a performance, e.g. orientational information (which 
beat in which gongan) or speed-change information. While internal tags can be 
set and unset manually in almost the same manner as external tags, this is more 
risky, because internal tags are often part of a complex chain of events triggered 
by, and depending on one another. The internal tag goToNgelik, triggered by 
the recognition of a ngelik-signal simply switches to another segment, but the 
internal tag suwuk (≈ ‘end the piece’) for a gendhing like ladrang Wilujeng 
triggers a chain of events stretching over more than one gong-period, and in-
cluding several speed changes, a context-dependent segment switch, changes in 
drum-patterns and dedicated behavior towards and at the final gong (Figure 10). 
More importantly though, internal tags are not intended to initialize activities 
modeled to be results of interaction. They are just the messengers of decisions 
resulting from the playing and recognition of musical signals. 
 
 
Modeling a gendhing 
 
 In the following, we will cover the basic components of the framework by 
example of modeling a gendhing. This overview explains what components are 
required to achieve this and how these components are combined. VGG being an 
open framework, both these components may be replaced by different, possibly 
more refined versions, and may be combined in entirely different ways. Giving 
an account for one possible implementation, we hope to make it reasonably easy 
to develop new models, as well as to use and complement the given one. 
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 Performance flow 
 
 Before starting playback, we have to set some general initialization parame-
ters like speed, volume and instrumentation (or accept defaults) and select a 
piece from the mentioned dictionary of gendhing. 
 
Figure 8: Some initialization parameters to be set before starting playback of a 
piece 
 
g.gendhing.pathet = \p7; 
g.gendhing.form = \ladrang; 
g.gendhing.name = \wilujeng; 
g.gendhing.gonganDuration = 
g.gongan.[g.gendhing.form].gong[0]; 
g.gendhing.bukaDuration = 
g.gendhing.notation.buka.eventDuration; 
g.gendhing.segments = g.gendhing.notation.keys.asArray; 
g.gendhing.initialTempo = 1.8; 
... 
 
 Balungan-notation is usually split into the segments a gendhing consists of 
(e.g. buka ‘opening’, umpak ≈ ‘transitional part’, ngelik ≈ ‘vocal part’) which 
can also be nested in substructures (e.g. a ngelik containing several gongan). We 
need a functionality that brings segments into the required order and follows 
each substructure. As neither the amount of repetitions nor segment succession 
is predetermined, a method is required to dynamically decide how to continue at 
each segment border (most often at a gong). While there is always a default or-
der at each position of choice, musicians can choose an alternative path, e.g. in 
order to adjust to an unexpected occurrence in the context of the performance. 
Even if the default order is maintained, segment succession is reinforced by mu-
sical signals played by musicians whose musical roles include this responsibility.  
 A common case is a branch-signal, played to indicate a switch to a segment 
called ngelik, in which metrically bound singing of classical poetry steps to the 
foreground.13 The signal is played by the bow instrument rebab, and in its ab-

                                                 
13  The importance of musical signals for organizing performances in Javanese gamelan-music 
has been pointed out frequently. Heins (1970) puts a focus on wayang accompaniment and the 
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sence by the gong-chime bonang barung. Other parts14 can also reflect or antici-
pate the shift to the high register, from which ngelik-singing usually starts. Ac-
cording to Javanese musicians it is primarily the responsibility of the rebab to 
indicate the switch. In actual practice we can observe that the rebab generally is 
the first to rise, while the bonang is the most widely audible part among those 
that can reflect the register-switch in their playing style. It is noteworthy that the 
ngelik-signal itself is not a dedicated pattern used exclusively as branch-signal, 
but a pattern reflecting high register in a melodic context, where unmarked 
playing would imply a low register. This is interesting in itself, but also poses a 
challenge to pattern-recognition, because the object to be identified is not just a 
fixed tone-sequence, but a defined difference in garap (lit. ‘treat’, ≈ ‘part-gen-
eration’) that could manifest itself in many different surface-forms. Realtime 
pattern-recognition (on a symbolic level) is one of two important mechanisms 
that trigger setting a tag, which in turn may determine the segment played next. 
In figure 9 we see how the tag ‘goToNgelik’ controls segment succession. The 
ruleset15 contains two blocks containing succession rules (associations denoted 
by an arrow between two objects) for all segments of the performed piece. If the 
‘goToNgelik’-tag is set while a segment switch is approaching, the block 
headed by ‘goToNgelik: true’ will be evaluated, if not, the default rules apply 
(headed by an empty event-dictionary ‘()’). 
 

                                                                                                                         
interaction between dhalang (‘puppeteer’) and musicians, and Brinner (1995) describes them 
within a general framework of musical interaction. 
14  bonang panerus, gendèr barung, gambang, siter, gendèr panerus, suling, sindhénan, if present 
gérongan and sometimes also kenong and kempul 
15  As opposed to the gendhing Dictionary, rules are stored as Array, which is indicated by 
their enclosure in brackets [] rather than braces (). As opposed to a dictionary, the elements in an 
array have a fixed order. This makes sure that every condition is applied in a deterministic order. 
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Figure 9: Succession-rules for a simple form containing the three segments buka 
(‘opening’ – played only once), the unmarked gongan umpak (≈ ‘transitional sec-
tion’) and the vocals dominated gongan ngelik (lit. ‘make small’ i.e. ‘become high’). 
 

g.gendhing.segmentSwitch = [ 
   (goToNgelik: true) -> [ 
      \umpak  -> \ngelik, 
   \ngelik -> \ngelik, 
   \buka   -> \umpak 
                 ], 
    () -> [   
            \umpak  -> \umpak, 
            \ngelik -> \umpak, 
           \buka   -> \umpak 
           ] 
     ]; 

 
 Ending a gendhing requires a decision – otherwise the performance would go 
on forever by repeating one or several gongan over and over. The decision to 
come to an end could come from outside or from a musician, usually the drum-
mer. In a composition like Ladrang “Wilujeng”, performed with gérongan in the 
ngelik, a default suwuk (≈ ‘process of ending a piece’) would be initiated by the 
drummer well before the start of the last ngelik and stretch over almost 1.5 
gongan (Figure 10). In this case a slight speedup (ngampat) at a defined position 
becomes the signal for all musicians that the piece is going to end at the next 
default opportunity. This results in an obligation to switch to the ngelik at the 
next opportunity because the piece should end there. Therefore the rebab has to 
signal the ngelik before the gong (it usually has the choice to signal ngelik) and 
other garap-parts reflect the signal by switching to high register as well. This 
behavior is made obligatory by the initialization of suwuk by the drums, but it 
doesn’t outwardly differ from a normal switch to ngelik, except that it is per-
formed at a slightly increased speed. While the garap-instruments switch to high 
register the drummer plays a special pattern16 to the gong, which is only used 
towards the penultimate gong, thereby reaffirming the impending end at the next 
gong. Another modification of standard drumming to reinforce suwuk can be 

                                                 
16  The drum-pattern towards the penultimate gong in ladrang kendhang kalih .B.P.P.B.P.gB  is 
taught at ISI-Surakarta but not always used in other communities. 
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used towards the second kenong in the ngelik.17 The final phase of the suwuk is 
initiated towards the third kenong by continuously slowing down until the final 
gong. The slowing down is controlled by the drummer who uses a dedicated 
pattern. During the slowdown musicians with subdividing instruments do not do 
an irama-switch, as speed would require in a default situation, and all instru-
mentalists wait with the last tone for the strongly retarded gong to be hit first.18 
 This description of the way to end Ladrang “Wilujeng” can be used to end all 
pieces of comparable build (form and performance mode) if implemented in a 
generic way, i.e. not bound to a static reproduction of Ladrang “Wilujeng”, but 
formulated in terms that can also be applied to other pieces (Figure 10). The 
actual steps to be taken (use dedicated kendhang-patterns, speed up or down at 
certain positions relative to the gongan, branch because of impending suwuk, 
etc.) are formulated programmatically in a way that can be reused and modified 
centrally if so wished. Most importantly the process is not modeled as a fixed 
sequence of occurrences, triggered once by an external tag, but as a process 
which at two points depends on a mechanism that a) creates a musical signal and 
b) recognizes this signal by evaluating its symbolic representation, without re-
lying on the initial trigger. 
 

                                                 
17  Adding a .P.B before the default .P.B.jKIP.nB 
18  Vocals, especially the pesindhèn (‘female solo vocalist’), play a central role in the coordina-
tion of the timing during the last tones and for the final gong. It is outside of the scope of this 
description to follow this up, and outside of the possibilities of the VGG implementation to model 
such interdependencies, as vocal parts are not implemented yet. Suwuk without vocals can be 
observed in ensembles that don’t employ vocalists (e.g. bonangan).  
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Figure 10: Slightly simplified representation of the most common, unforced way of 
ending a piece like Ladrang “Wilujeng” with vocals of the poetical form salisir in the 
ngelik. The process is initiated by the external tag mcDoSuwuk and continued by 
signals triggering two internal tags (suwuk and goToNgelik). Timing is controlled 
by evaluating orientational tags (current segment and current position in gong-pe-
riod in beats [sabet]), continuously supplied by the class Pgongan. 
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 Irama and speed 
 
 The interrelation of speed and irama (≈ 'speed/subdivision-level') are handled 
by the pattern class Pirama. The stratification of the musical texture into layers 
of different beat subdivision levels is an eye-catching feature in central Javanese 
gamelan music. 
 
Figure 11: Two irama-levels with balungan, exemplified by schematic realization of 
the gong chimes bonang barung and bonang panerus. Both instruments play with 
the same beat density on both irama-levels, yet with twice as many tones per 
balungan-tone in irama II. At some point of an (usually continuous) irama-transition 
the subdividing instruments will snap back to their idiomatic beat density. 
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 While most of the time a gamelan plays at one of various static speed-levels, 
there are phases of transition, where the entire ensemble either slows down or 
speeds up until it reaches a new static speed level, which usually is close to half 
or double of the previous speed (as measured by balungan-beats). This process 
is often called irama transition. While some parts, e.g. the balungan, simply go 
along this change, others switch their subdivision-level to half or double to com-
pensate for the speed change. Because of this behavior it is sometimes difficult 
to tell whether a gamelan plays faster or slower after a transition. If the new 
static speed-level is less than half the previous speed, all instruments that ‘snap 
back’ could be described as playing faster than before while the balungan (and 
interpunctuating instruments) have slowed down considerably. The same para-
dox holds for the opposite speed change direction. In fact the slowest speed level 
from the perspective of balungan, the rangkep (lit. 'doubling') of irama wilet 
(often just called irama rangkep or irama IV) is often seen as the fastest playing 
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style, because the percussive garap-instruments play with a higher beat-density 
than on other irama-levels. So if talking about speed in Javanese gamelan music 
it is necessary to make explicit which irama and part we are referring to.  
 
Figure 12: Schematic illustration of an irama-transition from \ir1 to \ir2. The 
gong-chimes bonang barung and panerus snap back to their idiomatic stroke-den-
sity once the balungan-speed has stabilized on a level close enough to half of the 
initial speed, such that snapping back can result in an idiomatic stroke density. 
Consequently the pulse resulting from the summation of all parts also returns to its 
initial speed or density. Practice isn’t necessarily as systematic as indicated here – 
players do not always switch at exactly the same moment, nor necessarily at the 
end of a 4-tone-group (gatra). The duration of the transitional phase, as controlled 
by the drummer (pengendhang), may differ substantially. The actual timing of this 
interactively controlled transition isn’t well understood yet. We hope that, in the 
future, the VGG implementation can help to gather some more insights. 
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VGG distinguishes five irama-levels by defining different speed-bands relating 
to one beat of balungan mlaku19. The fastest (\ir0) and slowest level 
(\rangkep3) only require the definition of one threshold to their inner neighbor 
– the three inner levels have an upper and a lower threshold. In order to reduce 
the risk of instability (jitter) during transitions, or when micro-rhythmic varia-
tions occur around thresholds, the system distinguishes between thresholds while 
                                                 
19  Balungan mlaku is generally considered the default balungan density. It is usually notated as a 
succession of ciphers without any rhythmic diacritics (e.g. 27.23) while its sibling, the sparser 
balungan nibani, is notated with interleaving prolongation-dots (e.g. 2.3.). One way of defining 
balungan mlaku without reference to notation is by relating it to the gong period of a specified 
form: a gong-period of the form ladrang consists of 32 balungan mlaku or 16 balungan nibani 
beats. The definition is clear when bound to either irama 1 or 2 and can - e.g. because of conflict-
ing notational traditions (which in turn might reflect perception shifts) - become blurred in irama 
3. This discussion lies outside of our current scope. 
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speeding up (higher) and slowing down (lower). This seems to agree with actual 
musical practice: in a downwards transition, musicians tend to switch rather late 
in a relaxed manner, reinforcing the new irama only once it has almost been 
reached. This prevents both an impression of haste and does not push the drum-
mer during slow down. Therefore the downwards-threshold is close to the target 
speed (see Figure 13, the lower band. The threshold values are represented in 
white, the target speed in black color). In an upwards-transition players tend to 
switch earlier (relative to the target speed). The accelerated pulse quickly be-
comes too fast to be played, but musicians tend to switch even earlier than their 
technical reserves would allow, both to prevent the impression of haste and to 
ease and reinforce the speedup (see Figure 13 upper band). The speed at the 
threshold will nevertheless be higher than during downwards transitions. 
Switching late also allows distinguishing a proper irama-transition from a slight 
speedup to, e.g. to initiate the ending of a piece, or to adjust to contextual re-
quirements in a dance or puppet-play (see fig. 13). 
 Speed is not the only factor determining the moment of actual switch in an 
irama-transition. An interfering factor is the principle of pattern-integrity. A 
threshold might be passed in the middle of a pattern that has a melodic conclu-
sion. Switching exactly when the threshold is passed could break the melodic 
conclusiveness. The current VGG implementation always concludes a pattern 
before a part switches irama. As a consequence, parts sometimes switch at dif-
ferent moments – an occurrence that can also be noticed in actual practice. Yet 
the implications are deeper, because a) patterns might have an internal break-
point due to sub-segmentation and b) because we can also observe some players 
trying to find creative solutions for the wish to switch close to a felt threshold, 
obviously in order to reinforce the new irama from an as appropriate as possible 
moment onwards. 
 Within general usage, automatic irama switching just works in the back-
ground. Dedicated experiments would probably start with fine tuning thresholds 
and refactoring the model. It is not very probable that thresholds are the same 
among different forms, genres and performance-contexts of gamelan-music. 
Thresholds might also depend on the starting speed of a transition. Another point 
of interest not mentioned so far is the profile of transition curves, which will be 
discussed in the context of a separate model of interrelating clocks (see p. 176). 
There are many open questions as to the adequate parameters of speed gradients. 
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The current state may be seen as a starting point from which to explore these, 
based on evaluation by competent musicians. 
 
Figure 13: Schematic illustration of the model underlying switch-thresholds in 
irama-transitions in the VGG implementation. Each irama-level (\rkp3 to \ir0) has a 
stable speed-bandwidth (deepest black). The upper band shows thresholds (white) 
during upwards transitions, the lower during downwards transitions. The grey-
shaded areas between stable bands are only traversed during transitions.20 
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20  The very senior Solonese musician Bp. Mujiono, who likes to entertain his co-musicians by 
leading the gamelan on the drums through very uncommon and unexpected transitions and speeds, 
once had a spectacular success at a klenèngan at the home of Bp. Rahayu Supanggah (Benawa, 
2003), when drumming ladrang “Pangkur” in a most unexpected manner. While he is known for 
entering irama rangkep unusually often and in the most unexpected places, in this performance he 
surprised everybody by doing the opposite in a piece where a drummer has the opportunity and is 
expected to demonstrate his originality, amongst others by using rangkep a lot. Bp. Mujiono’s first 
surprise was that he only started the first transition into rangkep at the most common place to-
wards the first kenong in the ngelik. While this would be normal for most drummers it is impossi-
bly conformist for Bp. Mujiono. Yet he made up for this “shortcoming” instantly by never slowing 
down far enough to conclude the transition and enter rangkep, while it had already become too 
slow for irama wilet. Bp. Mujiono kept his co-musicians in this unstable state between irama III 
(wilet) and rangkep, and stayed there for almost two gongan, without ever - and that is very un-
usual for ladrang “Pangkur” too - stopping to allow for a solo of one of the female singers 
(andhegan ‘stopping’). The performance was accompanied by frequent exclamations of amused 
irritation and ironic protest by the musicians. On a transitory speed-level, musicians continuously 
expect the conclusion of the transition (which Bp. Mujiono never allowed to happen) and become 
unsure at which subdivision-level to play. Next to being a priceless example of extravagance in 
klenèngan it helps to demonstrate that unstable speed-bands between irama-levels do exist. 
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 Pathet and tonality 
 
 Many gendhing, especially more popular ones, can be played in several pa-
thet. Accordingly, many céngkok can be transposed a step up or down as well as 
be used in both tuning systems sléndro and pélog. This circumstance, which 
poses quite a challenge to a Western notion of melodic identity, is better under-
stood in its general outline than in its details. We can't always easily tell why 
certain pieces or céngkok can be transposed and others not, whether small 
changes in transposed céngkok should be considered a part of a general fuzzy 
variability, part of an instrumental idiom, a result of general tonal dynamics, or 
simply part of – not necessarily homogenous – traditional convention. Addi-
tional phenomena that add to complexity are temporary shifts of the tonal centre 
or tonal ambiguity, minir in sléndro, where only rebab and voice use shifted 
tones, and momentary alterations in pélog, which can sometimes cause a scale-
split between pentatonic garap-instruments and the rest of the ensemble. 
 On the implementation side, we want to avoid writing rules and patterns in 
several pathet if they can be derived from one another by transformations. This 
keeps data-sets smaller, simplifies their maintenance and is a significant step 
towards modeling tonality in Javanese gamelan music. On the other hand there is 
a risk of over-generalization: if some forms of céngkok are bound to a certain 
pathet or context, we cannot transform them together with other, more generic 
ones. Therefore we need to be able to specify the tonal scope of a rule. 
 Such specifications are also a prerequisite for the possibility of playing back 
pieces in a different pathet than their source notation. Principally there are two 
options: either the balungan is transformed first and parts are generated from 
that new base, or transformation is done during part generation. The first strat-
egy seems more straightforward, it basically only requires a few tables defining 
how tones are mapped in a transformation. Cases though, in which plain tone-
per-tone mapping does not lead to the required results because shift of mode 
and/or tuning system also causes a change of tone successions in the balungan, 
require additional means of transformation. Such changes can be handled by the 
rewrite system used for part-generation described in the next chapter. As said 
above the rewrite-system aims at reducing the amount of necessary rules by do-
ing pathet normalization where applicable and therefore also offers the option to 
transform between tuning-systems and/or transpose between modes. As the use 
of a rewrite-logic is required anyway to cover cases in which balungan changes 
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melodically in transformations, it might thus be more efficient to do such trans-
formations during part generation. 
 Transforming a piece between the heptatonic tuning system pélog and the 
pentatonic sléndro is straightforward only if we know that the pélog version 
consistently uses a pentatonic subset of the heptatonic scale. In this case the no-
tational conventions of Kepatihan notation are such that the tones mapped in a 
plain transform between the two tuning systems are designated by the same ci-
phers, except of course for pélog 4 and 7, which do not exist in sléndro. Yet for 
consistently pentatonic pélog pieces the transform from pélog to sléndro is nev-
ertheless straightforward, as 7/1 and 4/3 never concur in such pieces. 7 thus 
maps to sléndro 1 and 4 to sléndro 3. When transforming from sléndro to pélog 
the traditional pathet designation often, but not always allows identifying the 
pélog tone to be chosen among the two alternatives. The situation is further 
complicated by the fact that many if not the majority, especially of larger pélog 
gendhing use more than 5 tones. The most common case is an alteration of high 
1 to the lower 7 at the apex of a melodic contour. Alterations between 4 and 3 
are less predictable, and sometimes, though rarely, a high 4 should be mapped to 
5 rather than 3 in a pentatonic reduction. Except for this last case transformation 
from pélog to sléndro should be straightforward, yet the result need not neces-
sarily be pleasing for competent musicians. As said above, the factors determin-
ing whether certain transforms are possible or not are not well understood yet. 
We have a traditional body of pieces existing in various pathet, experimentally 
generating transformed pieces not documented by tradition could help to under-
stand better, which factors prevent transformations. 
 An additional challenge for refinements of the treatment of pathet by the 
system is the handling of traditional pathet-assignment, which does not conclu-
sively contain the tonal information required for part generation. Some pieces in 
pélog pathet nem follow the manyura logic of tonal relations among céngkok 
and parts, while others follow the sanga-logic. This means that traditional pathet 
assignment can be ambiguous in a feature essential to pattern-generation in ga-
rap parts. Additionally, quite a few gendhing have momentary shifts of their 
tonal center, or have tonally ambiguous segments, i.e. segments that are treated 
differently in tonal respect in different performances, or by different players. 
While it might be possible to disambiguate such cases in the rewrite system by 
evaluating long contexts and metrical constraints, it might as well turn out to be 
necessary to subcategorize pathet with secondary tonality specifications. The 
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latter approach is more straightforward because it does not assume that tonal 
disambiguation can always be done by context-evaluation, but requires piece-
specific additional information to be added either to the source-notation or to 
dictionaries complementing traditional notation. 
 
 Part generation and the rewrite system 
 
 Parts are generated in realtime by means of VGG's rewrite system imple-
mented in the class Tafsiran (lit. ‘interpretation’). Rewrite-rules are formu-
lated as associations which are evaluated in a fixed order. An association binds a 
match-key to a rewrite-value. A match-key in its simplest form is represented as 
a sequence of tones in VGG notation. In order to produce valid results, the dura-
tion of match-key and rewrite-value have to be identical21. To derive a pattern 
for bonang barung from balungan we would write: 
 

"27.5.6." -> "27.5.5.5.7.--5.7.5.-6.6.7.6." 

 
 Order in matching events 
 
 Both match-key and rewrite-value may have various forms, and may be 
recursively nested. The rules are listed in arrays and thus are evaluated in a fixed 
order. The first key to match returns the rewrite-value (see fig. 14). 
 The relevance of match-order becomes apparent by comparing associations 1, 
2 and 3 in Figure 14. In absence of the first rule the bonangan for balungan 
"27.5.6." would be generated by matching "2.7." first, and "5.6." in a 
second run (associations 2 and 3). Yet it is preferable to use the pattern returned 
by association 1. If "2.7." or "5.6." occur in different melodic context, e.g. 
"2.7.23" or "5.6.7.6.", the output of the associations 2 and 3 is valid. Thus 
more specific associations are positioned in front of more general ones, to make 
sure they are matched first. 

                                                 
21  The rewrite-system assumes that the duration of match-key (more precise: replacement win-
dow, see below) and rewrite string are identical. It will scale any duration of the rewrite-string to 
the duration of the replacement window within the match-key. This prevents loss of synchrony 
caused by errors in rewrite strings, but more importantly adds some notational flexibility: rewrite-
strings, consistently written at double- or half-time, will also be rendered correctly. 
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Figure 14: A small array of rewrite-rules to demonstrate the relevance of match-
order 
 
(irama: \ir2, pathet: \p7) -> [ 
 "27.5.6." -> "27.5.5.5.7.--5.7.5.-6.6.7.6." 
 "27."     -> "27.2- 27.27.", 
 "5.6."    -> "5.6.5.- 5.6.5.6.", 
 "33--"    -> "3.3.[3.-3-] 3.[3.-3-]3. [3.-3-]3.[3.-3-] 3.[3.-3-]", 
 "33"      -> "3.3.[3.-3-] 3.[3.--3--]" 
 ] 
 
 Broadening scope with variables 
 
 Comparing associations 2 and 3 reveals some redundancy. While the keys 
differ, both share the same derivation-principle: the tone-pair of the match-key is 
repeated four times, the 4th tone of the resulting string is left out, and the dura-
tion of the third tone duration is doubled. Such a derivation could also be gener-
alized by using a single Function that processes any tone-pair.22 VGG offers 
another way to define such derivations in a general manner which keeps close to 
the syntax used to formulate associations. It uses letters as variables for tones, or 
technically speaking, as variables for a single Event of arbitrary tone degree and 
duration, both in key and value. The following association will cover above as-
sociations – and any tone-pair – with a single rule: 
 

"ab" -> "aba-abab" 
 

 Associations of this degree of generality can be expected to be strongly over-
generalized, so care must be taken to position rules in front of this one for any 
case where a tone-pair is handled in a different manner. Tone-repetitions, for 
instance, should be treated differently from tone-steps. Therefore the above rule 
must be preceded by a rule that makes sure that all tone-repetitions are matched 
first and only the remaining tone-steps are matched by the more general rule: 
 

"aa" -> "a.a.[a.-a-]a.[a.--a--]" 
"ab" -> "aba-abab" 

 

                                                 
22  In SC3 e.g.: ~pipilanIrII = { |a| a.dup(4).flat.put(3, "-").join } 
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 As we see, VGG variables can take octave and duration diacritics like normal 
tone-ciphers. A mixture of tone-ciphers and variables is also possible. Variables 
in rewrite-associations allow formulating very general rules with a simple and 
transparent syntax. Yet this also introduces a risk of overgeneralization. One of 
the challenges for adequate part-generation will be to prevent these by finding 
the correct match-order and by constraining the applicability of rules with ade-
quate conditions. 
 While letter variables are bound to single events, the asterisk "*" makes it 
possible to match several events at once. This wildcard "*" takes rhythmical 
diacritics appended to it (e.g. "*--") and sums up the durations of an arbitrary 
amount of events until the duration indicated notationally has been reached. This 
allows the formulation of match-keys that look for a goal-tone (sèlèh) at a 
rhythmically defined position, regardless of the tone-degrees and amount of 
tones/events before the goal-tone. As opposed to "abc3" the key "*---3" will 
not only match "5653" and "1'653" but also "1_2_3_5_6_5_3". 
 It is helpful to understand the logic behind this functionality. Both keys 
(match-strings) and values (rewrite-strings) of associations are entered in nota-
tion as Strings. This is a convenience method that allows representing musical 
patterns in a relatively familiar form. These strings are converted internally to 
arrays of events by the notation-parser of VGG, and it is through this notation-
parser that certain characters gain special functionality. For greater flexibility it 
is possible to use event-notation directly in the rewrite system as well. It is even 
possible to mix event-notation and string-representation. The parser only con-
verts notation enclosed in quotation marks (i.e. Strings) and passes everything 
else to the system unchanged. 
 An important feature of a rewrite system is the fact that there need not be any 
intrinsic relationship between input and output values – they are just defined as 
being associated. Parts like pekingan and bonangan in basic playing modes can 
well be understood as being derived from balungan by processing its tones 
(doubling, grouping, iterating...), and one could argue that such relations be-
tween in- and output should be reflected in the generative model. In fact earlier 
versions of the VGG implementation contained functions to derive pekingan and 
bonangan mipil from balungan. Functional representation of parts-derivation 
can easily get very complicated or even impossible. As the event-variables allow 
for a concise and efficient representation of such derivation-relationships, the 
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functional notation was given up for the benefit of a unified syntax of defining 
part-generation. 
 
 Disambiguation by melodic context 
 
 During the rewrite process, an input melody – typically but not necessarily 
the balungan – is sequentially compared to keys from the rules-array. Each time 
a match is made, a rewrite-string is returned and the matched string from the 
input melody is discarded, or – as we will see below – moved to the context. 
Subsequently the process starts over. Provided every tone-sequence of a melody 
finds a match, the concatenation of all return-strings creates a complete new 
part. As an implicit requirement of this operation, the rhythmical durations of 
key and value must be identical, otherwise input and generated part will not stay 
synchronous. The system exploits this implication by scaling all rewrite-strings 
proportionally to a duration identical to that of the key. This allows us to notate a 
value on any rhythmical level. Provided the rhythmic proportions are correct, the 
rewrite-system will deliver the right durations, thus both "21" and "2_1_" will 
return the same duration values. 
 While the above principles are useful, they do impose a serious restriction on 
the rewrite system introduced so far: they imply that a rewrite-string can be de-
termined by internal features of the input pattern to be rewritten only. Yet many 
rewrite rules require the consideration of melodic context of the actual rewrite-
string.23 Therefore the rewrite-system offers the option of distinguishing three 
segments within a match-key: prefix, replacement window and suffix. 
 

                                                 
23  All – at least recent – students of garap instruments have been taught by use of expression 
like: "to reach goal-tone z use céngkok n if starting after tone x. Use céngkok o if starting after tone 
y". Such rules consider what we call the prefix within the match key.  



 R. Schütz/J. Rohrhuber 
 
164 

Figure 15: The three segments of a match-key. Only the replacement window is 
rewritten in the current run. In the subsequent run the content of the replacement 
window is added to the prefix. 
 

replacement window... prefix suffix ..." < > "   -->   " rewrite string "

match-key

 
 
 The prefix of a match-key is compared to that part of the input melody that 
has been rewritten in the previous runs. The suffix is compared to that part of the 
input string that will be rewritten in the next runs. Prefix and suffix allow adding 
melodic context as another constraint to the rewrite rules. They are separated 
from the replacement window by angle brackets. This allows formulating a more 
specific variant of rule 1 in 0: 
 

"3<27.5.6.>33" -> "27.5.5.5.7.--5.7.5.-6.6.7.2" 

 
And as a continuation: 
 
"27.5.6.<33--" -> "[3.--3--][3.--3--][3.--3--][3.--3--][3.---3---]" 
 
 The distinction of replacement-window and context opens up another option 
which might seem counter-intuitive at first: it allows breaking up a long rewrite 
string into several components by moving parts of it into the suffix first and then 
consecutively matching all components while moving the adjacent segments to 
the context as needed. This approach is less efficient with respect to the amount 
of match-runs required, but it can be advantageous with respect to realtime-be-
havior and variability. The longer a rewrite string gets, the more difficult it be-
comes to make sure that no conflicting change occurs after the match has already 
been made. A simple example is a segment change: if a match is made across a 
segment border before a switch tag has been set, a conflict will arise when the 
switch occurs. Either matches across segment borders must be prevented, or 
replacement windows must be kept short enough to guarantee that matches never 
hurry ahead so far as to obstruct an interactively initiated change. Breaking up a 
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long rewrite-string into components – which often can be reused in different 
contexts as well – has the additional advantage making it easier to recombine 
components with a high degree of variability (see below). 
 
 Complementing notation by tags 
 
 While the notational extensions made available in the VGG rewrite-system 
allow for many ways of addressing features of musical patterns selectively, these 
are necessarily bound to the feature-set available in the event-chain, which in 
turn mirrors the features made available by the musical notation in use. This 
restriction can quickly become limiting. For example, there is no established 
way to express irama, pathet, form or metrical position, although we know that 
these factors are significant for the disambiguation of keys. We could easily 
imagine other, less obvious factors (e.g. tradition/style, personality, mood, per-
formance context), which could also influence pattern-choice, but which cannot 
readily be expressed in notation.  
 The VGG rewrite system tries to offer a place for all these aspects in a uni-
fied, flexible tagging system. It allows dividing rule-sets into classes distin-
guished by tags or bundles thereof and thus can distinguish contextually deter-
mined outputs of the same key, as well as dramatically reduce the number of 
rules to be tested in a single iteration. It is a free tagging system, yet it also al-
lows the nesting of rules, providing an efficient way to express hierarchies. The 
tagging system extends the representational potential of musical notation into the 
semantic sphere. Anything that can be expressed lexically or by relations among 
lexemes can be made a tag and thus become part of the selection criteria in the 
rewrite system. 
 We have already mentioned the most obvious criteria for the selection among 
rules: form and irama. These two are special in that any rule needs to explicitly 
define at least one of them, and most rules require both. The current implemen-
tation, next to ‘form’, also adds the category ‘segment’ to distinguish forms of 
the same interpunctuating structure but differing performance modes, e.g. la-
drang or ketawang vs. ompak and ngelik. We would assume pathet, and there-
fore laras, are also obligatory attributes, yet this is less straightforward than one 
might expect – some rules for some parts can be formulated in a pathet-inde-
pendent manner. It will be interesting to see to which extent the traditional cate-
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gorization (6 pathet, three in each laras) provide sufficient and unequivocal cri-
teria for rule selection in pattern-matching.  
 Some aspects of musical performance cannot have any impact on pattern 
matching in the current implementation. The most notable of these are loudness 
and micro-rhythmical aspects which become effective after parts have been gen-
erated in the rewrite-system. While the exchange of musical signals, irama and 
significant base-speed changes can become part of pattern-matching, volume 
and micro-rhythmical speed variations cannot take effect in the present design of 
the rewrite rules. This might be considered a shortcoming if one assumes that 
any distinct feature of musical performance has the potential to become signifi-
cant in part generation. However we know of no case within the current scope of 
VGG where loudness or micro-rhythmical variations are not directly connected 
to other phenomena already explicit on the symbolic level. Therefore they do not 
introduce any new information significant in determining part generation. 
Should this change, similar classes like that of Pirama would have to be intro-
duced together with appropriate matching rules. 
 
 Variability, disambiguation and randomness 
 
 Another important aspect of part generation is variability. Variability is an 
interesting musicological problem because the degree of variability we observe 
largely depends on our own sophistication as observers. Specifically, it depends 
on our ability to disambiguate patterns of comparable distribution. Within the 
scope of VGG, the problem of how to handle variants ultimately boils down to 
deciding what degree of disambiguation to integrate into the system. Both on the 
level of notation and tags we have to choose the degree of detail appropriate to 
our requirements and knowledge. If we increase notational precision without 
additional distributional criteria, the amount of variants will rise. 
 Logically “disambiguated variants” are not variants any more, and if disam-
biguating factors are supplied they are not treated as variants by the system. It is 
well known that the perceptive filters that identify musical equivalence are 
learned to a substantial degree. This doesn’t mean that the – by whichever means 
– observable differences between two entities conceived as identical are not per-
ceivable at all, but perception might be less sensitive to the difference – and if 
the difference is perceived, it is not considered distinctive. Such non-distin-
guishing differences could be either ignored or presented as essentially random. 
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An ideal treatment of variability would require a consistent degree of descriptive 
precision with respect to data representation (which requires a theoretical base 
from which to define this consistency) and a reasonable account of how musical 
distinctions are drawn within the respective music-culture. Variants would then 
be cases where entities distinguished by data-representation have identical dis-
tribution. 
 In the study of central Javanese gamelan music, and perhaps the cultural sci-
ences in general, it would be naïve to expect studies to achieve both the consis-
tent descriptive precision of a symbolic system, and a recognition of distinctive-
ness as defined by the culture, and – to add another dimension – the individuals 
making up that culture. We don’t know of any approach to objectify or quantify 
musical difference, and culturally defined distinctiveness in music must be seen 
as highly multifaceted and dynamic. Research should be seen as an attempt at 
moving in this direction. Our hope for the VGG implementation is that it will 
become a tool to support this process. 
 A framework for modeling difference on both levels should be detailed down 
to the physical level. Advanced audio-synthesis programs are probably some of 
the best available tools for this purpose. The question will be how to make use of 
the potential both epistemologically and syntactically within a system ultimately 
aimed at the description of culture. The notation used cannot claim conclusive-
ness in that respect, its benefits derive from the fact that it is developed within – 
and links to – a rich tradition of discourse about the culture under study. The 
freely extendable event system was chosen in order to avoid unnecessary con-
straints on potential differentiations and allow literal language to complement 
notation. It comes at the price of potentially complex data structures, which can 
become difficult to maintain and potentially long evaluation cascades, difficult 
to process in realtime. 
 In most scenarios, our treatment of variability will be more modest. We will 
come across variants with identical distribution relative to the degree of differ-
entiation required for our central purpose. There may be distinctive factors, but 
we feel legitimized (or forced) to ignore them. For these cases the rewrite system 
offers an efficient notation to store the variants side by side, and to have the 
system choose randomly among them on each instantiation of an association. 
Such variants can be written as Sets: 
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Figure 16: Example of an association using a set in the rewrite string to allow for 
random choice among equivalent variants. 
 
"33--" -> Set["3.3.[3.-3-]3.[3.--3--]3.3.[3.-3-]3.[3.--3--]",  
   "3.3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]",  
   "3.3.[3.--3--][3.--3--][3.--3--][3.--3--][3.-3-]", 
   "[3.--3--][3.--3--][3.--3--][3.--3--][3.---3---]" 
  ] 
 
 Sets can also be used on the key-side of associations, where a match is valid 
for any of its members. This can be an efficient way to broaden the scope of a 
rule and is another way to formulate many to many relations efficiently: 
 
Figure 17: Example of an association using a set in the match-key to efficiently add 
several keys to one rewrite rule. 
 
Set["33--", "3<-33-", "3<--3-"] 
 -> Set["3.3.[3.-3-]3.[3.--3--]3.3.[3.-3-]3.[3.--3--]",  
        "3.3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]",  
        "3.3.[3.--3--][3.--3--][3.--3--][3.--3--][3.-3-]", 
        "[3.--3--][3.--3--][3.--3--][3.--3--][3.---3---]" 
       ] 
 
 Pattern-components, variables and data-maintenance 
 
 By now it is probably clear that data maintenance within the rewrite system 
can be challenging: adding variants alongside definitions of their distribution 
and refining descriptive granularity of notation24 can quickly create large data-
bodies with a complex structure. At the same time many rewrite strings consist 
of concatenations of subsegments or components which can be highly repetitive 
and/or occur in many different contexts. 

                                                 
24  Most of the transcriptions of patterns in publications are deliberate simplifications representing 
sets of real-world patterns with slight melodic variations. The knowing reader can usually derive 
real world patterns from such a representation without difficulty. As long as variability and the 
specific shape of such variants is not within the focus of the author, this shouldn’t be a problem. 
As the notation used to generate parts in the VGG implementation ultimately forms the base from 
which sound is generated, the notational granularity will have to be finer than in common practice. 
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 Variables can be very useful in controlling some of the complexity and nota-
tional redundancy. We can store musical notation or functions25 under a 
meaningful variable-name and call them by that name anywhere at any time. If 
at some point we find that our data-representation requires some refinement or 
correction, we just do that once in the variable assignment. As a consequence the 
change will automatically propagate to all places where the variable is called. 
Using variable names rather than notation for the representation of musical pat-
terns is far less error-prone and significantly eases data maintenance. Addition-
ally, and maybe most interestingly from an epistemological point of view, it 
allows us to employ existing, or introduce new suggestive terms to address mu-
sical patterns. This means we can use semantically motivated terminology, and 
query the content of each term by calling the current value of the variable at any 
time. 
 Figure 16 presents a transparent example to demonstrate some ways to re-
duce notational redundancy. Reformulating that association in the way outlined 
above could take the following steps (in slightly simplified SC3 syntax). 
 
• create a dictionary  
 g = (); 

• make a branch for atomic components, headed by a meaningful name. The 
term gantungan (lit. ‘hanging’) is used to refer to repetitive patterns re-
maining on the same tone 

 g.gant = (); 

                                                 
25  The dynamically typed object-oriented design of SuperCollider allows to meaningfully store 
anything (any “object”) in a variable. If we store a function rather than the result of a function-
evaluation, we can trigger the evaluation of that function each time the variable is called. If the 
function constitutes a variable generation-principle (if it contains some kind of randomness), it can 
create different results at each evaluation. If we store a Set, we can ask for a randomly selected 
member of the set each time we call the variable: 
Assign a set to a variable: ~mipilIr1Sl6 = Set["27.5.- 6.6.7.6.", "27.5.- 
6.7.-6.", "27.5.- 6.7.--"]; 
Retrieve any of the three set-members: ~mipilIr1Sl6.choose; 
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• add the components for later concatenation 
g.gant.compA = "3.3.[3.-3-]"; 
g.gant.compB = "3.3.[3.--3--]"; 
g.gant.compC = "3.[3.--3--]"; 
g.gant.compD = "3.[3.-3-]"; 
g.gant.compE = "[3.-3-]"; 
g.gant.compF = "[3.--3--]"; 
g.gant.compG = "[3.---3---]"; 

• concatenate components in the various known ways to fill a rewrite 
string of required duration. Express repetition by the method dup(n) ‘du-
plicate(number of duplications)‘. 
g.gant.versA = g.gant.compA ++ g.gant.compC.dup(2).join 
g.gant.versB = g.gant.compA ++ g.gant.compD.dup(4).join 
g.gant.versC = g.gant.compB ++ g.gant.compF.dup(3) 
               ++ g.gant.compE.join 
g.gant.versD = g.gant.compF.dup(4) ++ g.gant.compG.join  

• create a Set of variants: 
g.gant.variants = Set[g.gant.versA,  
                      g.gant.versB,  
                      g.gant.versC, 
                      g.gant.versD 

          ]; 

• use the Set in an Association. For each match one of the variants is 
randomly chosen: 
"33--" -> g.gant.variants; 

 
 This might not look very attractive at first sight. Yet with rising complexity 
of data structures and an increase of the frequency with which atomic compo-
nents can be reused in different contexts, it can increase clarity. It could also be 
used as formal base for the development of terminological paradigms to address 
pattern-segments. 
 
 Pattern matching and interaction 
 
 Parts generation by means of VGG’s rewrite system is so far based only on 
balungan. This approach draws on a long tradition of theoretical attempts to 
assess or model the internal build of the rich texture present in gamelan music. 
Centering a description of this texture around balungan is a strategy employed 
from the earliest to the most recent descriptions of this music. This despite the 
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fact that the approach has come under heavy attack in the post-Kunst era, in 
which both scholarly and practical study of gamelan music became very popular, 
especially in the United States, and with important contributions of Javanese 
both in the US and in Java.26 The clearest reflection of the role of balungan in 
the conceptualization of this music is the Javanese notation system, which repre-
sents a gendhing by writing down its balungan only, accompanied by some ad-
ditional information like pathet (‘tonal mode’), form and name. In view of the 
strong opposition against a “balungan-centric” perspective in parts of the more 
recent discourse about gamelan music, it might appear surprising that this 
balungan-centric discourse is quite common in Java as well, both in writing and 
teaching. In Java, this approach appears to be less of an issue, probably because 
of a more pragmatic perspective, in which the model is used as a tool, e.g. to 
teach students principles of parts generation in practical classes. Use of balun-
gan does not necessarily imply its function as a starting point of a musical deri-
vation or variation process, or that it constitutes the mental representation of a 
composition in the musical mind. Balungan could simply be seen as a compact 
symbolic representation of a richer musical experience taught by means of prac-
tical examples and verbal explanation. If seen as a symbolic system rather than a 
musical agent, one might approach the question whether the entire texture of a 
performing gamelan group could be derived solely from balungan in a less 
charged manner. While the criticism of a balungan-centric perspective has 
greatly enriched our discourse on gamelan music, the question of how much of 
the musical texture could be explained by evaluating balungan only is still le-
gitimate, and the choice of balungan as the most prevalent basis for part genera-
tion appears to be justifiable. Attempting to advance the descriptive power of a 
balungan-based rewrite system, and pushing it to its limitations should be a 
highly revealing way of obtaining insights into both Javanese gamelan music 
and the power of a rewrite system as a descriptive tool. 
 This said, VGG’s rewrite system is by no means limited to balungan as input 
pattern. In fact, any part can serve as input and be evaluated meaningfully, pro-
vided a descriptive set of rewrite-rules is given. Part-derivation from parts other 
than balungan is very compelling, because it could constitute a highly revealing 
model of musical interaction. If somewhat unspecific, it is nevertheless a gener-
                                                 
26  Sumarsam (1975), who introduced the term inner melody, inspired a lasting discussion 
problematizing the central role of balungan. For an overview and discussion see Perlman (2004). 
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ally accepted view that sindhénan (female solo singing) is heavily guided by 
rebaban, that gendèr players sometimes choose patterns inspired by sindhénan, 
that ciblon, bonang imbal and gendèr with laku wolu (lit. 'step eight', ≈ 'double 
density') céngkok have tight interconnections and are likely to inspire one an-
other in a spirited performance.  
 It is also generally acknowledged that bonangan plays an important role as 
guide of the balungan when the playing style mipil is used. This melodically 
highly redundant playing style allows balungan-players to derive much of their 
part in realtime just by listening to the anticipating patterns of the bonang. The 
bonang also plays an important role in fine tuning and reinforcing agogic fluc-
tuations in some forms and playing modes. So turning around the current rewrite 
logic and deriving balungan from bonangan appears a very appealing model to 
construct, which – as opposed to the examples given above – would not be par-
ticularly difficult to implement. In fact, this would be a very interesting experi-
ment to make, because it has not yet been made sufficiently explicit to what 
extent balungan is derivable from bonangan mipil. Most of the time, derivation 
is very simple, following a logic analogous to Set[aba-abab, aba--ba-]-
>ab. Yet occasionally the bonang uses patterns where derivation is ambiguous: 
"a.a.[a.-a-]a.[a.--a--]".dup(2) could be played alongside "aa—" or 
"--a-". In other cases it may even appear impossible to derive balungan, be-
cause bonangan uses tones not present in balungan: 21.5.5.5.1--5.15.-
6.6.1.6. -> 2126. In practice though, musicians can usually derive their 
balungan safely in the latter cases too. Of course it is hard to say whether – at 
any particular moment – musicians derive their part, or whether they simply play 
from memory. Yet anecdotal evidence indicates that there is an intuitive capa-
bility to derive balungan in realtime even in the latter cases. This is in fact gen-
eralizable, because balungan – like other parts – has idiomatic céngkok and 
could be described as an informationally redundant, prototypically functional 
bridge between goal-tones. If we look at the above bonang-pattern 215.5.5.1… 
it is important to know after only the third tone (5.), it is safe to say that the en-
tire pattern will end on 6. Therefore the derivation of the appropriate balungan 
boils down to the question of how to reach 6. in a way idiomatic for balungan, 
and whether – in a specific context – there is only one answer to this question. 
Given such a procedure, it would be possible to formulate a rewrite-rule, speci-
fying the appropriate context in prefix and/or suffix that allows deriving 2126. 
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from the discussed bonangan pattern. Formulating this rule as a sort of hypothe-
sis, and then applying it to a large pool of real musical contexts should provide a 
fair test of whether the result describes musical practice adequately. 
 Of course the real situation is more complicated than this brief discussion 
indicates. Real world bonangan is more flexible than the examples show, and 
there are quite a few cases of unusual balungan. Yet the redundancy both in 
bonangan and balungan is worth considering, and a careful study of the relation 
between bonangan mipil and balungan should reveal that quite a lot of balungan 
can be derived from bonangan mipil even in cases where the simple aba-abab 
-> ab logic does not apply. The implication is that the apparent redundancy in 
Javanese gamelan music makes it possible to actually learn repertoire while par-
ticipating in a performance. 
 The main purpose of this digression was to demonstrate that implementing 
the derivation of balungan from bonangan mipil by means of a rewrite-system, 
which in turn is part of an audio-synthesis system, yields a very promising tool 
with which to test a scholarly hypothesis. The act of implementation presents a 
series of specific, detailed puzzles. The solution (not the workaround) to each of 
these puzzles could be seen as a formal encapsulation of a little music-theoreti-
cal statement. Because the result can be played back, we are able to then ask 
competent musicians for an evaluation based on listening only. 
 While appreciating the potential benefit of such a system, we should also 
have a look at the difficulties it presents. Solutions that take the more conven-
tional approach of deriving parts from balungan – rather than the opposite – 
initially appear as the only viable option. Balungan is a comparatively compact 
part,27 where many hours of music can be notated with a small amount of data. 
It is readily available in many editions, including digital formats, and could be 
transcribed quite easily from recordings when necessary. While there are ba-
lungan variants for quite a few pieces, it is undisputed that the version agreed 
upon in a performance is well defined and reproducible. Simultaneous use of 
different balungan versions in a performance is never intended. 

                                                 
27  While balungan is very compact it could still be seen as quite redundant. It would be an 
interesting experiment to try to identify the minimum amount of information required to generate 
everything that can be generated from balungan. While this “part” doesn’t exist, it should be pos-
sible to derive balungan from it. 
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 This cannot be said about other parts. While there are a few transcriptions of 
garap parts, most of them from ISI Surakarta, their coverage – except for the 
rebaban books by Djumadi28 – is not comprehensive. Most studies don’t simply 
write down a part, but instead present the playing style as a general collection of 
céngkok. The task of applying the material to specific musical contexts is a task 
left to the reader. A description of the principles of their application is usually 
not part of the publication. A collection of céngkok with undisclosed application 
principles could thus only be used as a source from which to build the rewrite-
system if the rules are added. This brings us back to the conventional approach 
of deriving parts from balungan by combining rules and céngkok. 
 There is a tradition of presenting a part as a collection of céngkok, and there 
are good reasons to do so, even if it carries some strong limitations. Some 
céngkok appear very frequently, making writing them out explicitly on each 
occurrence very cumbersome. The verbosity involved in working this way might 
be a requirement for certain categories of study. For example, a project that fo-
cused on variability or on minor adjustments made to céngkok at joints might 
depend on detailed descriptive transcriptions. Conversely, the studies we have 
mentioned generally tend to have a more prescriptive stance29 and attempt to 
present a part as concisely as possible. This is not only a scholarly challenge; it 
is also preferable in a discursive context where readers often already have ma-
ture conceptions of how céngkok are applied. In this context, writing out entire 
parts by reproducing the céngkok notation each time would only obscure the text 
and discourage the reader. A viable alternative is to present musical composi-
tions as chains of céngkok represented either by names or other short symbolic 
representations. This approach is quite common in informal gatherings and 
classes, yet to our knowledge has never been published in comprehensive studies 
covering larger portions of repertoire. There probably are several reasons for 
this: the approach could be seen as too flat, or as exposing aspects of this music 
that should better be studied in actual practice or in face to face communication 
between teacher and student. Last but not least, experts can reach such a high 
degree of fluency in interpreting balungan that the balungan itself suggests ga-

                                                 
28  Djumadi (1976-83, 1982) 
29  A notable exception is the siter study by Sigit Astono (1990), in which the siteran of three well 
reputed siter players of contrasting musical background is transcribed for five popular gendhing  
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rap as succinctly as the chains of céngkok names proposed above. This expertise 
is rarely made explicit. More often it is taught through a process where over-
generalized statements30 about the applicability of céngkok to balungan – or the 
principles of concurrence of balungan and céngkok in other parts – are gradually 
revised and complemented by more specific ones. In this process, the scope of 
rules gradually gets blurred – it is usually left open whether a more specific rule 
is bound to the individual occurrence where it was introduced, or whether it 
should be applied to all instances of comparable31 balungan. This is a shortcom-
ing for the theoretically minded, but the question is often of little relevance in 
the classroom, which comprises only a small part of a student's exposure to ga-
rap. Their pedagogical function in this context could be viewed primarily as a 
means of encouraging careful attention to interesting features of gendhing, rather 
than providing conclusive explanations of garap. The more advanced garap 
questions become, the less adequately they can be answered in terms of wrong 
or right, and the more they shift into the realm of individual preference. Like-
wise, musicians differ considerably in the degree of standardization they con-
sider appropriate – some have strong views how things should be played, while 
others are considerably more permissive or appreciative of variety. 
 Material derived from parts other than balungan is difficult to retrieve, far 
more variable than balungan and often highly redundant. This makes them sub-
stantially more difficult to use as a starting point of part generation. Choosing 
the conventional balungan-centric approach has the added benefit of integrating 
well with scholarly discourse from ISI Surakarta. Balungan centricity might be 
questionable as a model of the mental representation of gamelan music, but it is 

                                                 
30  This is a deliberate simplification. In the beginning, students are taught without any reference 
to scope, and the genericness of céngkok is something that only gradually reveals itself in the 
learning process. Yet on an advanced level, the process resembles the way described above: stu-
dents can easily create a tentative part by applying a few general rules and are taught more specific 
or sophisticated realizations on that base. 
31  Comparing instances of balungan makes no sense without considering contextual factors, 
among the most prominent pathet and melodic context (preceding and succeeding balungan). 
Additional factors include also the position within gong-phrase or metrical weight and form. The 
impact of the latter two factors is less well rationalized, likewise the term kalimat lagu (lit. ‘tune 
sentence’) which is occasionally used in Javanese discourse on such matters. As factors contribut-
ing to the identity of a certain balungan phrase can be quite manifold, it can be difficult to ascer-
tain whether two balungan instances with identical tone-successions are identical with respect to 
garap. 
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an attractive foundation for studies of garap, and well represented in Javanese 
discourse on the matter. Following this course will reveal as much about ba-
lungan itself as it will about garap parts. 
 Using parts other than balungan as input for the rewrite system is also rele-
vant on the level introduced at the beginning of this chapter – some musicians 
having an impact on the performance of others in realtime. Musical agency in-
spires variation and controls the course of a performance. Melodic interaction – 
a pesindhèn following a rebab, a bonang associating with a ciblon or vice versa 
– is fundamental to advanced performance. Modeling this interaction with the 
current VGG framework is not trivial: realtime constraints are even more rigid in 
parts which have basically been derived in the very moment. The time span al-
lowed for recognition-based reaction must be very short. As balungan is preex-
istent, we can make the key-size as large as required.32 However, if pattern 
recognition is used to model interaction, information can only be evaluated once 
it has become audible. This means there is a clearly defined and sometimes very 
short time span between the recognition e.g. of a melodic signal and a potential 
reaction. 
 In order to derive results from pattern-matching beyond basic rewrite-strings, 
we use the class Preact. It also uses Tafsiran as pattern-matching compo-
nent, which means that it can recognize patterns based on the same symbolic 
representation of match-keys, and it can evaluate tags. Yet while the rewrite 
system returns strings, Preact specifies functions. Therefore Preact can act as 
an external agent to the system, doing things like setting or removing a tag (to be 
evaluated in the rewrite-system), or triggering actions like switching to another 
segment or speeding up and down. A sophisticated model of interactivity should 
also allow for shifting attention, modeled as a switch between different input 
melodies, or even divided attention, monitoring several input-melodies in rapid 
alternation and choosing the most relevant one in each instant. More differenti-
ated interactivity in part generation thus remains a challenge to be explored in 
future experiments with the system. 
 
 

                                                 
32  There is a pitfall though: if a key matches cross segment-borders and a segment-switch is 
initiated after a match was made problems will occur. 
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 Micro timing: interaction and jitter 
 
Interaction is also an important factor contributing to finer aspects of musicians’ 
timing. While it is generally acknowledged that the drummer is in control of 
speed and speed changes, our model should not depend on absolute control. In a 
performance musicians don’t know in advance when a transition or tempo-ad-
justment is going to occur, nor is the profile (duration, gradient, and curve) of 
speed changes precisely predetermined. Even though in many performances, 
conventions are followed about when and how a transition should occur, all 
players will wait for the drummer to take the first step. While a drummer may 
give signals to indicate the ending of a piece or to anticipate the switch to a dif-
ferent drumming mode, speed changes are initialized just by carrying them out, 
and are not signaled in advance. Control that permeates as change in sound re-
quires a bit of time to become effective and not every player will necessarily 
react in exactly the same way. The musicians’ reaction to an initialization of 
speed changes also has some influence over how a particular transition will ul-
timately be executed. The feedback of rhythmically salient instruments like pe-
king (highest metallophone with a very constant stroke-density) and bonang 
probably plays a more important role than that of others.33 At the start of a piece 
it is usually not the drummer who sets the initial speed, but the player of the 
melodic introduction buka. The drummer may adjust that speed if desired, but 
the change should be smooth and everybody should be able to follow.  
 The VGG implementation attempts to capture timing as a result of mutual 
adjustment by allowing each stream of independent events (which usually repre-
sents the sequence of actions of one player) to have its own temporal frame of 
reference. Timing negotiations between players can be very intricate, because 
the judgment of the others’ tempo (and one’s own) depends on many different 
factors which are not easy to formalize. To experiment with a system where 

                                                 
33  One of the most distinguished musicians of Solo, Bp. Suyadi, the former leader of the RRI 
ensemble (Radio Republik Indonesia Surakarta), claimed in a lesson that (even) the rebab could 
guide the long initial transition at the beginning of a gendhing and advised to play rebab there in a 
rhythmically plain, less ornamented and delayed manner. Rebaban is one of the most prominent 
parts in a gamelan, but one wouldn’t count it among the rhythmically salient instruments because 
it is often not heard well by all players. While the musician's statement would probably be dis-
puted by others, it shows that sound characteristics (rhythmic salience) and social factors (role as 
leader) contribute jointly to the dynamics of playing together.  



 R. Schütz/J. Rohrhuber 
 
178 

timing is negotiated between the players, the class ListeningClock abstracts 
from individual tempo judgment and instead makes it easier to reason about a 
network of interacting frames of time reference. The intention is to allow ex-
perimentation with tempo adjustment without assuming a single master clock, 
and with the option to distinguish between different listening and response be-
haviors. In such a network, every player may take into account any number of 
other players to any degree. The degree to which they listen is defined as a list of 
weights between 0 and 1, where 0 means not listening to the respective player 
and 1 means only listening to this player34 (see Figure 18). Thus, a listening 
clock can temporarily loosen the synchrony between the clocks of a couple of 
instruments during speed changes. When a transition returns to a stable speed the 
clocks will be resynchronized as well. The instruments participating in such 
mediated timing relations can be chosen freely, and relations can be chained. For 
each relation the parameters can be set independently. Rather than a mature 
model of interactive timing in central Javanese gamelan music, this implementa-
tion should be seen as a framework for experiments and development; an initial 
attempt to address the issue (see fig. 18). 
 In the current implementation, we simplify the situation by assuming that 
every musician knows every other musician’s tempo and phase (the relative 
timing offset) at any moment. Every player may ‘listen’ to every other player 
and adjust his own playing according to: (1) a weighted average of the others’ 
behaviors, (2) a playing attitude, denoted by the two parameters empathy and 
confidence. The algorithm takes into account two possibly contradicting exi-
gencies: (1) the tension between one’s own consistent speed and the other play-
ers’ speeds, (2) the tension between achieving contiguous playing and remaining 
in time with the rest of the ensemble. The first is related to tempo, the second to 
timing offset, to phase. In figure 18, we give a more detailed account of the sim-
ple algorithm that runs at a given rate in each clock. 
 

                                                 
34  These values may be changed at any time during the performance. Future extensions of this 
clock network could take the current context into account and vary these values accordingly. 
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Figure 18: A small network of clocks listening to each other. The arrows depict 
weights of mutual influence. An external change to one of the clocks results in the 
proliferation of this change in the ensemble. 
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 First, each clock calculates ∆θavg, the (weighted) average of the phase differ-
ences between its own phase θref and the phases of the clocks it is listening to. It 
also calculates the average tempo φavg of those other clocks. In a next step, the 
clock derives its new tempo from these values. The clock’s parameters confi-
dence and empathy determine how the ensemble’s average phase difference 
and tempo influences the clock’s new tempo: 
 
Equation 1   φnew = φavg· (1 − confidence) + φold · confidence +∆θavg · empathy 
where φavg is the average tempo of the rest of the ensemble, and ∆θavg the aver-
age phase difference. φold and φnew are the previous and the new tempo of the 
currently adjusting clock. 
 The parameter confidence is intended to denote the confidence in the rele-
vance of one’s own tempo, so that high confidence entails a tendency to insist on 
one’s own tempo. The parameter empathy models the willingness to adjust 
one’s phase, “to be with the others”. It is easy to understand the influence of 
these parameters (which both range between 0.0 and 1.0), if we consider extreme 
cases. For instance, a fully confident player without empathy would simply re-
main unaffected by, and thus out of sync with, all the other players. Such ex-
treme cases provide a good starting point, since the tempo calculation formula 
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above becomes greatly simplified. Let’s first consider this case of the player 
where empathy = 0.0. As a confident player without empathy, one may be 
thought to remain in one’s own tempo despite changes in the ensemble 
(c = 1.0, e = 0.0): 
 
Equation 2  φnew = φold · 1.0 
 
 Conversely, when both one’s empathy and one’s confidence are minimal, one 
would not remain with one’s old tempo, but immediately jump to the average 
tempo of the rest of the ensemble (c = 0.0, e = 0.0): 
 
Equation 3  φnew = φavg· (1 − 0.0) 
 
 Such a player will always follow tempo changes, but will be indifferent to 
whether they play in sync with the others; there is no adjustment for phase dif-
ferences, but only to tempo differences.  
 Now, the second parameter, empathy, is the degree to which a player reacts 
to phase differences. In other words, while confidence is tempo-oriented, empa-
thy is synchronicity-oriented, so that high empathy will cause us to follow other 
players very closely, low empathy will cause us to ignore phase differences, 
even if we follow their speed meticulously. 
 For instance, imagine a player guided mainly by an awareness for where in 
the piece the others are now, and less by his own tempo. In this case, the conti-
guity of his own playing will be reduced, and adjustments to the ensemble quick. 
This situation is extreme when confidence is minimal (= 0.0) and empathy 
maximal (= 1.0). In the above formula, the influence of the player's own tempo 
can be left out, so that only the average ensemble tempo and the average phase 
difference have an effect (if the ensemble is faster, but behind – so that ∆θavg is 
negative, the new tempo is not necessarily higher than the old one) 
(c = 0.0, e = 1.0): 
 
Equation 4  φnew = φavg· 1.0 + ∆θavg 

 
 If, however, we decide to play both maximally confidently and emphatically, 
our own tempo will not adjust very much. This is not because we note the en-
semble's tempo changes, but because we try to play on the others’ beats. This 
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situation shows a maximum tension, and when all players of the ensemble listen 
to each other in this way, the ensemble may diverge, oscillate, or become cha-
otic. The simplified formula then looks like this (c = 1.0, e = 1.0): 
 
Equation 5  φnew = φold + ∆θavg 

 
 We can easily imagine that transitions can work with reasonable grace when 
the players have a well adjusted balance between confidence (considering each 
others’ tempos, and their own), and empathy (neither jumping on the others’ 
beats, nor ignoring their current phases). The way an ensemble slowly adjusts to 
tempo changes depends on the details of all these behaviors and to what degree 
each player listens to other players. 
 On the level of micro-timing, VGG provides a separate simple algorithm that 
may be applied to every stream: the class Ptiming allows control of systematic 
delay and micro-rhythmic variation (parameters that normally do not compro-
mise part synchrony) by means of several parameters. This pattern is a starting 
point where further research may be done in order to refine the relation between 
musical context and micro-timing. In the current implementation, Ptiming 
takes into account four parameters of micro-variation: offset, jitter, drift and 
driftratio. Generating numerical values, it can be applied to any event stream’s 
\lag or \offset field, which serves as a phase offset, independent of both the 
events’ inter-onset time, and the clocks’ tempo variations. All variations are 
generated on the basis of SC’s pseudo-random number generator, which is fast 
and reliable, with a very long period length. 
 The parameter offset (in Ptiming) is a constant timing offset added to each 
value to account for a player consistently playing slightly before (negative value) 
or after the beat (positive value). This may be specified as dependent on specific 
roles for certain instruments, or on a player’s personal style, in order to model 
the specific roles of certain instruments in a given piece, or simply to adjust for 
slower attack characteristics of some instruments (if not corrected by the player).  
 The second parameter, jitter, allows us to specify the micro-variations in 
timing that are independent of past events and speed: it accounts for a constant, 
physical or deliberate inaccuracy of playing.  
 Finally, drift and driftratio define a level of timing that may be described as 
standing somewhere between the previous two: while offset is a constant differ-
ence, and jitter a new random aberration from the beat given by the system, drift 



 R. Schütz/J. Rohrhuber 
 
182 

is an incremental change of offset. Each new value differs a little from its previ-
ous value. In other words, being a random walk, consecutive values depend on 
each other. Similar to the tempo movements of ListeningClock, its effect can 
be taken as a constantly corrective and adaptive movement (yet much more sim-
plified and on a micro level). Here, the parameter drift determines the maximum 
total drift from the offset points, and the driftratio the speed at which this drift 
changes. In difference to the continuous co-adjustment of the clocks, this algo-
rithm accounts for an errant, independent aspect of alteration that is not captured 
by the former. Together, these four parameters frame a simple dynamics of mi-
cro-temporal variation that supplements the dynamics of tempo changes and 
rhythmical variation, for each stream independently. Further research efforts into 
this aspect of timing can be easily formalized and integrated into the system (and 
thus into the entirety of the experimental setup). 
 
 Audio-synthesis  
 
 Actual sound is finally created by sending the information derived from vari-
ous resulting event-streams to either a sample player or an audio synthesis unit. 
This is preceded by applying a few necessary basic physical parameters like 
volume/balance and spatialization, which can partially be controlled from a sim-
ple graphical mixer. 
 The sample player currently uses a basic set of samples made from the ga-
melan of the Arts University Graz as part of the VGG project. Using samples has 
various advantages: we use tuning and sound recordings of a given ensemble 
and achieve a relatively realistic sound without putting a high burden onto the 
system. This is sufficient for many applications of the system: testing parts gen-
eration, experimenting with speed, irama, transitions and the like. Yet a sample-
player does not allow detailed control over the physical parameters of each 
sound event. Without loss of precision, recorded sounds can only be manipulated 
as atomic units. To give a simple example, direct frequency modifications would 
be applied to all sound components alike and therefore change durations propor-
tionally.  
 Once the sound itself moves into the center of attention, we will want to ac-
cess its individual components independently and thus use the audio-synthesis 
module. Currently, the available measured data contain information about fre-
quency, amplitude, phase and temporal behavior (attack and ring time) of the 
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partials in all samples in the KUG gamelan.35 We have structured this informa-
tion in a nested and relative manner: the timbre of each key or gong of an in-
strument is represented as a collection of these properties. These collections in 
turn are combined into one collection of tones (keys or gongs) per instrument. 
Frequencies are stored not as independent values but as ratios. Starting from the 
lowest pitch and nested according to the structure described above, all frequen-
cies are stored in a relative manner. As a consequence, we can determine the 
scope of experimental detuning by choosing the appropriate nesting-level. The 
frequency of a partial (fpartial), for instance, can be derived directly from the 
product of the ensemble’s root frequency (f0), the ratio of instrument frequency 
to this root, (cinstr) the key’s ratio to the instrument (ckey), and the ratio of the 
partial, relative to the key (cpartial): 
 
Equation 6  fpartial = f0 cinstr ckey cpartial 

 
 This is only the internal representation – the parameters can either be edited 
directly, or by means of their respective values in absolute frequency, relative or 
absolute cents. Since they are constantly updated,36 they may be changed in 
real-time without interrupting playback, so that many experiments with various 
systematic modifications are possible: For example one may detune or dampen 
the whole ensemble, apply a different scale to an instrument, and choose 
whether to change the overtone pattern or not. Or one may dampen or detune all 
partials in a given range of frequency for a group of instruments. What gives this 
feature a new quality is the fact that such experiments can be made within a 
playing gamelan. Changes thus are not just applied to an abstract collection of 
sound (like a scale), but to a changing musical context in which tonal dynamics 
re active. 

 

                                                

a

 
35  The values have been extracted from the recordings used in the sample player with MatLab 
scripts programmed by Franz Zotter as part of the VGG project. For simplicity of explanation we 
reduce the partial-properties to three here: frequency, amplitude and ring time. 
36  All parameters are read with a rate of 750 Hz, and are linearly interpolated to avoid 
discontinuities. They can thus be either manually adjusted during playback, or programmatically 
modulated. In some cases, for instance, one may want to detune an instrument slowly over a long 
period of time, or one may want to introduce a vibrato on a number of partials. 
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Recapitulation: a walkthrough 
 
 We have touched upon very different aspects and components of the frame-
work. The system as a whole combines these components (and their respective 
assumptions) in a fairly uniform manner, relying mainly on the pattern classes, 
which are extended by some additional classes like the synthesis module and the 
rule object. On the whole, we may see VGG as a prototype for a connection 
between different assumptions about necessary competences and interactions. 
This prototype can be restructured and extended easily, and its parts may be 
refined without affecting the rest of the implementation. In the following section, 
we will give an overview of how its parts are connected. 
 Starting from balungan-notation and the notation-parser, a basic event-stream 
is created, which is subsequently enriched with required information. Some of 
this information has to be set manually (e.g. pathet and initial speed), some is 
retrieved from dictionaries containing generic information. Streams are proc-
essed in realtime by other streams that derive from classes generically called 
Pattern in SuperCollider. One pattern may create multiple streams, each of 
which can operate at the same time, either chained or in parallel. If they operate 
within a chain of streams, one stream receives the output of the other without 
having to wait for the preceding stream to finish processing the entire stream. If 
a pattern only processes a single tone on each iteration, the next pattern can op-
erate as soon as this tone is modified.  
 The first patterns to operate on the balungan-stream just add meta-informa-
tion required later for parts-derivation: metrical information by Pgongan, the 
current subdivision-level by Pirama, required tags, pathet, form and others. 
Feeding this information into the stream means that each event contains the re-
spective information independently. Processes depending on this information 
don’t have to look it up somewhere else and a change is immediately present as 
part of the event definition. Operations applied subsequently may modify the 
balungan in its notated form in order to ease part generation. The output of such 
operations may either replace the current balungan-stream, be added to the 
stream, or be established as a parallel stream used for the generation of different 
parts. 
 Subsequently parallel streams are created for each part by invoking the pat-
tern Ptafsiran for each instrument independently. This pattern generates each 
part by evaluating instrument-specific rules stored statically in the dictionary of 
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the respective instrument. While some instruments wouldn’t really require the 
invocation of the rewrite engine to be generated, the current implementation has 
chosen this path to allow for a unified logic of formulating rules for all parts.  
 Splitting up streams not only creates different parts playing together, but also 
provides a way to localize agents that operate on self-contained information sets. 
These agents can exchange information with other agents, but they do not see 
everything present in the system. By controlling consciously at which place in 
the tree of streams information is fed into the system, we can control the infor-
mation available to an agent. If we feed information into the stream before indi-
vidual parts have branched off, all parts will share this information, if we feed 
information into one of the branches, only parts derived from this branch will 
contain it. Therefore in principle it is possible to model chains of information 
exchange or communication going on between individual agents or a subgroup 
of the ensemble only. 
 Once generation for all parts is active, the streams responsible for identifying 
musical signals (derived from Preact) receive each stream. Identifying a musi-
cal signal means recognizing musical patterns in the event stream. The signal-
identification uses the same algorithm as the rewrite engine. Any time a signal is 
recognized (a key matches), a function is evaluated which can change the default 
flow of the program. As opposed to the rewrite-system, where a match will al-
ways cause a rewrite-string to be issued, the function triggered in Preact could 
cause any programmatic activity. Common examples are setting a tag or con-
trolling speed-changes. Therefore this pattern defines one type of the informa-
tion sending agents in the system. 
 On the next layer two fine-adjustments to timing are made. The Listening-
Clocks try to account for some of the interplay between musicians when speed-
changes occur. We allow for the possibility that there is some reaction delay and 
that different parts have a different degree of rigidness adjusting to other parts. 
Setting the parameters for empathy and confidence, and setting up cascades 
of clocks, should reflect known roles and rhythmical salience of parts.37 The 
resulting stream is processed by a pattern (Ptiming) that allows to control lag in 

                                                 
37  The aforementioned pattern Pirama creates streams that derive tempo information from each 
respective clock. 
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a generalized manner and that adds some temporal randomness to the events 
reducing the over-precision of machine timing.  
 Before the resulting streams are sent to the synthesis-unit, a few basic physi-
cal parameters like volume and spatialization are set. As synthesis unit, either a 
simple sample player or an algorithmic sound-synthesis-unit can be chosen. The 
sample player uses a set of samples made from the gamelan of the KUG, the 
sound model used for synthesis works based on data retrieved from an analysis 
of the mentioned samples. When using the synthesis-unit it is possible to control 
the physical properties of each partial to experiment with sound. 
 
 
Conclusion and methodological reflections 
 
 Over the course of developing the implementation, we have been aiming at a 
good balance between the different, but intertwined requirements of this project. 
While on the one hand, we had to realize and explain a working prototype; the 
framework should be more than a machine for automatic music rendering. To 
learn how to reason within such a system, and simultaneously how to construct 
it, requires both sensitivity to detail and limitation as well as decisions of how to 
structure a general discourse that does not get lost in the immediate needs of 
realization. As our discussion of the modeling of a gendhing demonstrated, basic 
problems are solved and the framework is suitable for further exploration be-
yond elementary questions. At this point, it may be helpful to reconsider some of 
the basic design decisions in VGG, and how they fit in a more general meth-
odological view.  
 VGG has two sides: on the one hand, it serves as a generative scheme to play 
back pieces that are part of a repertoire. On the other hand, and more impor-
tantly, it is a framework for musicological research. While experimental systems 
(Rheinberger 1997) have been in focus mostly within natural sciences, there is 
no reason to preclude their application from other sciences, such as anthropol-
ogy.38 We must keep in mind though that such systems do not simply exist in 
isolation from research practice – rather they are born of the exigencies of ex-
plicit constraints and actual research questions, and they unfold through the 
                                                 
38  The chapter Algorithms in Anthropology makes an attempt to provide a broader context for this 
subject matter. 
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process of resolving their ambiguities and problems. Despite a few exceptions, 
computer experiments are not yet an established method in ethnomusicology. In 
systematic musicology, and especially within cognitive musicology, this is more 
common, not least because of the historical importance of computation repre-
senting a model for cognition. On the side of art, the experimental application 
and development of computer languages has also become increasingly advanced, 
so that musical knowledge has become more clearly intertwined with computer 
languages. It is only a matter of time before different music cultures begin to 
influence computer music practice.  
 So what do we actually investigate when doing computer experiments in 
gamelan music? Our work with VGG and Javanese gamelan music has involved 
a continual reflection upon the relation between several discourses: the experi-
enced knowledge of musical practice and competence, the emic reflection on the 
same, the ethnomusicological discourse, and a system that is capable to serve as 
a framework. A constant awareness was needed for the relation between vo-
cabularies inherited from the different terminological cultures that have grown 
from their communities of practice.  
 We have tried to make clear that such an experimental system should not be 
seen as a model of central Javanese gamelan music. Rather, it should be consid-
ered a model of a given understanding of this music that allows us to explicate 
its underlying assumptions as well as experiment with their consequences. 
Maybe most importantly, this helps us to better understand the possibly unex-
pected dissonance between various suppositions. It cannot and need not be a 
replacement of any kind for the practice of performing this music, and obviously 
does not serve the same purpose as established means of organizing knowledge 
about it. This does not mean though that such as system is disconnected from its 
subject matter, since a computer model of our understanding of something may 
well turn out to show characteristic constraints and thus to shed light on possible 
reconfigurations of knowledge, be it by differentiation or abstraction. Following 
Rheinberger, it is relevant to consider that experimental systems necessarily 
combine what he calls technical objects (those parts of the system that form the 
canon of established techniques) and epistemic things (those which are related to 
the shifting, ambiguous concepts under investigation). In VGG, for instance, one 
could consider the sample playback system an established technical object, but 
not each of the rules that serve to generate the parts. Similarly, the way to repre-
sent knowledge of the current sabet may be considered mature, but the various 
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conditions under which it becomes relevant are subject to investigation. We 
should not preclude any reconfiguration of these roles though: under certain 
circumstances, the fixed points of yesterday shift in the focus of today’s research 
questions. We have tried to balance ‘black-boxing’ with openness, a feeling of a 
perspicuous presentation with access on all levels of representation – yet only 
experimental practice will show where the most promising constellations are to 
be found.  
 Let us in the following briefly repeat and summarize a few orientating con-
cepts that we based our decisions on. Literate and interactive programming 
paradigms have been mentioned in the introduction already – we wish to be able 
to combine knowledge representation and algorithmic model into one single 
system that is reconfigurable at runtime. The decision to include both terminol-
ogy and notation established in ongoing practice is born from the necessity to 
provide a valid and practical extension to the methods of ethnomusicological 
work, and to really ‘make sense’.  
 Apart from these general frames of reference, there are more specific design 
decisions. Perhaps most important among these is our focus on the high-level 
representation of interconnected streams of events. These events are the sites for 
inscription of knowledge (or, to be precise, they are the site of the inscription of 
an assumption about knowledge). This knowledge is produced in stream nodes, 
between which the events flow and incrementally differentiate into parallel 
worlds – knowledge is always situated39 both in time and structure. The scheme 
that structures these situating processes is what we see in the chain of patterns in 
a given system, it is the static representation of a given program.  
 In other words, we may treat musical knowledge as situated both within a 
specific set of competences and in the context of a given moment. The first may 
be thought as an incremental differentiation of individual situated knowledge 
from collective knowledge. The second maintains the inherent temporal struc-
ture of musical context. By appropriately interlinking different levels of differ-
entiation, and by injecting various degrees of retention, interaction may happen 
both between those levels and different moments in time. Hence, in order to 

                                                 
39  There is a broad discussion of questions on situated knowledge and distributed cognition over 
the last decades. From the point of view of theory of science, see for instance Haraway (1988). On 
situated cognition Clark/Dave (1998) is a relevant introduction. Concerning computational sys-
tems, one may want to confer Clancey (1997) or Petric et al. (2001).  
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situate knowledge, one does not have to start with the assumption of an individ-
ual subject who is the bearer of knowledge. Neither do we have to assume one 
global archive that is accessible by such subjects. One may imagine the eventual 
sound synthesis to correspond to the bodily actions of each player, but the 
agency involved in the decisions required to perform these actions is distributed 
over both various degrees of collectiveness and temporal depth.  
 Thus, reasoning about the flow of causation in the system, we do not localize 
the agents of decisions in a preconceived group of entities that are to represent 
each individual player in the ensemble. Rather, the agents (which may be 
thought to coincide with competences) may have their place at any point in the 
field between individual and collective. This takes into account a view that con-
ceptualizes cognition and action to be intertwined not only in each individual, 
but also in a collective situation: in this way, we assume various degrees of situ-
ated and distributed cognition, as to allow the researcher model subjective situa-
tions without binding action and competence to a subjectivist view of musical 
agency (see fig. 19).40  
 We would like to emphasize that such a system exposes only an extremely 
simplified silhouette of how a piece of music might develop in actual perform-
ance. On that account, notation is drawn between the extremes of writing out 
sequences of known variations, and narrowing the conditions under which they 
might occur, and the other extreme of attempting to find general underlying 
principles of their generation. Accordingly, the coarse rhythmical framework of 
binary subdivision might still underlie the musical processes leading to collec-
tive agogic fluctuations so characteristic of Javanese gamelan performances. 
Variability might still be considered as choice among given patterns, the princi-
ples of which we aim to understand. This last point may be considered particu-
larly controversial. For one we would like to admit that implementing a model of 
musical inventiveness within the idiom of Javanese gamelan music appeared too 
ambitious a goal to aspire to. Yet it also seems that musical creativity in Java 
tends to express itself in an active command of many variants learned from dif-
ferent persons and traditions rather than frequent extemporization of previously 
unheard patterns. And maybe most importantly, while VGG aims to develop into 

                                                 
40  It would, for instance, be possible to modify the current implementation as to introduce 
computational agents that make goal-driven decisions. But one would not necessarily have to 
assume that these goals are primarily individual and their collectiveness only secondary. 
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a generative model of Javanese gamelan music, the goal is nevertheless primar-
ily descriptive. The model is a mode of expressing our understanding, and the 
resulting sound we see primarily as a tool to test our assumptions. 
 
Figure 19: Degrees of differentiation and collectiveness in situating assumptions 
about knowledge and competence in an example system. While all streams are 
independent, they may share generative principles. Other constellations may reor-
der this structure according to different assumptions. 
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 This all said, it remains one of the most essential aspects of a system like this 
that all reasoning with and about it is contextualized in the situation of listening 
to a complete ensemble in which all acoustic aspects form a complex experi-
ence; interacting with the system, modifying the system and listening to the sys-
tem move close to each other, and the musicological knowledge laid down in the 
process is kept active and integrated in context. For instance, while the example 
implementation discussed here is still elementary, already all parts are connected 
by interaction and general rules. Consequently, listening to the system, one 
learns to relate what one knows about its inner logic to what one knows about 
gamelan performance. This process will always be productive especially by its 
inherent difference; it is not mainly similarity of a model that leads to insight. 
Simulation therefore need not be in the center of the epistemic process, but 
rather this multifaceted involvement in the act of listening, construction, and 
thought. It is precisely such a practice of experimental listening that makes pos-
ing questions to and by the virtual gamelan a captivating and fruitful activity. 
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