
Grazer Beiträge zur Ethnomusikologie

herausgegeben von Gerd Grupe

Band 22

Die Grazer Beiträge zur Ethnomusikologie sind die Fortsetzung

der Reihe Musikethnologische Sammelbände 1 – 21,
begründet von Wolfgang Suppan, zuletzt herausgegeben von Gerd Grupe

Institut für Musikethnologie

Universität für Musik und darstellende Kunst Graz

Graz Studies in Ethnomusicology

Series Editor: Gerd Grupe

Vol. 22

The Graz Studies in Ethnomusicology are the continuation

of the series Musikethnologische Sammelbände vol. 1 – 21,
founded by Wolfgang Suppan and edited by Gerd Grupe

Institute of Ethnomusicology

University of Music and Performing Arts Graz

GERD GRUPE (Ed.)

Virtual Gamelan Graz

Rules – Grammars – Modeling

Shaker Verlag
Aachen 2008

Gedruckt mit Unterstützung der Universität für
Musik und darstellende Kunst Graz

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

© Copyright Shaker Verlag 2008
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder
vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der
Übersetzung vorbehalten.

Printed in Germany.

ISBN 978-3-8322-7637-9
ISSN 1867-4682

Cover-Illustration: Rainer Schütz

Shaker Verlag GmbH • Postfach 101818 • D-52018 Aachen
Telefon: 02407 / 9596-0 • Telefax: 02407 / 9596-9

Internet: www.shaker.de • eMail: info@shaker.de

http://www.shaker.de/
mailto:info@shaker.de

v

Contents

Preface ..vii

Gerd Grupe:
 Introduction: Musical Knowledge and Computer-based Experiments
 in Ethnomusicological Research or Can a Virtual Gamelan Ensemble
 Help Us in Understanding Karawitan? ..1

Bernard Bel:
 The Bol Processor Project: Musicological and Technical Issues17

Benjamin Brinner:
 Interaction in Gendhing Performance: The Panerusan27

Sophie Clark:
 The Role of Notation and its Impact on the Aesthetics of Gamelan
 Performance and Musical Creativity in Surakarta, Central Java59

Marc Perlman:
 Prolegomena to the Computational Modeling of
 Javanese Gamelan Music ..97

Julian Rohrhuber:
 Algorithms in Anthropology ...109

Rainer Schütz / Julian Rohrhuber:
 Listening to Theory. An Introduction to the
 Virtual Gamelan Graz Framework ...131

R. Anderson Sutton:
 Towards a Theory of Gambang Performance in
 Central Javanese Gamelan Music ...195

Appendix: Musical Examples from the paper read at the symposium
by Marc Perlman ..247

Contributors to this volume ..265

131

Rainer Schütz, Julian Rohrhuber

Listening to Theory. An Introduction to the
Virtual Gamelan Graz Framework1

Introduction

 One of the results of the project Virtual Gamelan Graz is a framework for
experimenting with rule-based models that aim at generating the sound of a ba-
sic central Javanese gamelan-ensemble playing gendhing (≈ ‘gamelan-composi-
tion’2) by evaluating balungan-notation (lit. ‘skeleton’, ≈ ‘core melody’). Here,
we shall give an introduction to ideas and principles underlying this framework.3
On the technical side, we try to be helpful to readers who are not at home in the
world of computer music. Conversely, as the system intends to be a research
environment for central Javanese gamelan music, we try to provide some back-
ground information on the music where it seems necessary to understand deci-
sions made in the implementation. For the novice reader it might be helpful to
seek complementary information in the glossary of Javanese musical terms.4

1 We would like to thank our colleagues from the VGG project and the participants of the sym-
posium for their valuable input. Additional thanks go to Alberto de Campo for advice and help
with the implementation and to Jesse Snyder for his hard work on the final draft.
2 Translations or short paraphrases are not given to do justice to the translated term but to give
those unfamiliar with Javanese music a rough idea of the concept referred to. If a term appears
untranslatable, a brief English explanation, preceded by ‘≈’, is given that fits the context (e.g.
irama (≈ ‘speed/subdivision level’)). If a term is not well understood or its meaning disputed, but
the literal translation appears helpful, the translation is preceded by ‘lit.’ (E.g. kalimat lagu lit.
‘tune sentence’)
3 It should be noted that, being part of ongoing research, its current state (mid 2008) is still in
flow. However, its architecture has proven to be reliable and extendible, so that we consider it a
valuable prototype.
4 There are quite a few general introductions to Javanese gamelan-music available. Among them
Sorrell (2000) is well accessible, Pickvance (2005) contains an encyclopedic wealth of informa-
tion, and Brinner (2008) offers a course book with accompanying audio-CD that makes sure to
present the music in its cultural embedding.

 R. Schütz/J. Rohrhuber

132

 The VGG implementation is written in SuperCollider 3 (SC3)5, an advanced
audio-synthesis programming environment with a rich feature-set in the domain
of algorithmic composition. Combining abstraction and reasonable simplicity
with the efficiency of a real-time synthesis system, SC3 is a computer language
that is becoming increasingly common in computer music and sound research.
While the VGG implementation provides graphical user interfaces such as editor
and player for sound synthesis, the main interface for user interaction remains
textual. The programming environment is not a hidden layer that produces a
finished application that the user is bound to, but rather an accessible and central
element of the system. We try to provide both a number of small, simple and
open user interface elements for specific tasks, as well as a programming envi-
ronment that permits to read and modify the program itself.
 Over the last four decades, a great number of approaches have been devised
of how to handle the programming process, with the result that the act of pro-
gramming itself has repeatedly become the subject of computer science. Maybe
the most interesting in our present context are the paradigm of literate pro-
gramming, and methods of interactive programming. Literate programming
emphasizes the integration of program text and scientific documentation, with a
strong emphasis on the readability of the code itself (Iverson 1979, Knuth 1992).
While still formal, code is comparatively close to a human readable text, com-
bining description with computation. Moreover, such an approach emphasizes
the ability to extend the language in such a way that its vocabulary remains
meaningful within the research domain. Here, it follows a strategy that has
evolved within computer language design: instead of keeping two accounts, one
being a description of a system, the other its technical implementation, one may
integrate the modeling process in a single, sufficiently descriptive programming
language (Meyer 2000). A computer language then serves both as a knowledge
representation system and as an active experimental context that allows to reason
about the implications of this knowledge. In the case of VGG, this allows us to
unify a description of assumptions about musical performance and competence

5 SuperCollider was developed by James McCartney and is a GPL-licensed open source applica-
tion, now actively maintained by its author and a lively community. More information on SC3 is
available on James McCartney’s site (http://www.audiosynth.com/) and the project-homepage on
Sourceforge: http://supercollider.sourceforge.net/. The VGG implementation was developed on
OS-X 10.4. Since SuperCollider-versions for Linux and Windows have come a long way towards
cross-platform compatibility in 2008 it should not be difficult to adjust the VGG implementation
to run on both platforms.

Listening to Theory

133

with a system that realizes these assumptions in a form which one can listen to.
The same program text has two audiences: the human reader and the machine.
 A system for interactive programming, on the other hand, is structured as to
allow the rewriting and reassembly of any significant part of the program while
it is running. Thus, the programming language is not just the technical means to
finally implement an already existing model, but also a part of an experimental
and iterative process. It extends the idea of the integration of knowledge and
computation by the concept of interactive writing. Although interactive pro-
gramming is a method in the sciences at least since the late 1960s
(Klerer/Reinfelds 1968), its implications are still under active research. The Su-
perCollider language incorporates the outcome of these efforts to provide a suit-
able environment for computer experiments (Rohrhuber/De Campo 2008; Rohr-
huber/De Campo/Wieser 2005).
 These two paradigms, literate and interactive programming, underlie many
basic design decisions in VGG. As a consequence, the development cycle is
fairly short, and on-the-fly changes can generally be listened to immediately.
Maybe the most obvious influence of literate programming in the VGG imple-
mentation is the extensive use of nested name spaces (using dictionaries,
see p. 140), often including Javanese terminology. Although this makes the pro-
gram text less accessible to non-expert readers, we have chosen to give prefer-
ence to the richness and semantic descriptiveness of Javanese terms. Replacing
laras by ‘tuning system’, pathet by ‘tonal mode’, garap by 'part generation' or
tafsiran by ‘derivation’ would have made the text appear more understandable to
most Western readers, but would have also veered away from the specifics of the
music we try to describe. Furthermore a concept like irama (≈ ‘speed/subdivi-
sion-level’, see p. 154) does not have an equivalent in English, and it seems
impossible to find a compact term that would reflect all the musical facets that
contribute to its meaning. It should be noted though, that we don't want to give
the impression that we claim this implementation could offer a general and rich
description of the Javanese terms it employs. It can only do so within the spe-
cific context of the given system. As such, it may be part of a process of rea-
soning about Javanese music and may complement existing means of descrip-
tion.
 We hope that the VGG implementation – written within an entirely open
framework that gives access to all its layers – will prove a useful means of ex-
changing views on gamelan-music by experimenting with the model itself. Be-
cause within the culture of the ethnomusicological community it is not common

 R. Schütz/J. Rohrhuber

134

to express thoughts about music in an audio-synthesis programming language,
we think that an introduction from a basic user perspective is warranted here.
 In the following, we will give an overview of different aspects of the system,
starting with notation and knowledge representation, and a brief introduction of
essential concepts of the language SuperCollider. From there, we use a case
study as a means of illustrating the components required to model a gendhing,
and to give a basic account of the inner logic of the framework. Research ques-
tions arising from the modeling of basic aspects of gamelan music, such as
irama, pathet, part generation, and interaction are considered in the light of a
concrete implementation. Finally, we describe main features of the sound syn-
thesis system that allows users to apply formal tonal patterns to different kinds
of gamelan sounds.

Notation and knowledge representation

 Musical notation

 The VGG framework attempts to allow gamelan experts to model musical
patterns using an already familiar notation: the Kepatihan-style cipher notation.
Kepatihan has become the quasi-standard of notation of Javanese gamelan mu-
sic.6 This is not a trivial task, because in most systems executable programming
code cannot contain non-standard symbols, which occur frequently in Kepati-
han.7 Although this required making some compromises, simple patterns will
still look quite familiar to those familiar with Kepatihan, and it should not be too
difficult to get accustomed to the special features of the VGG derivative:

6 Kunst (31973, vol. 1:346ff and illustrations in Appendix 3, vol. 2) gives an overview of early
experiments with musical notation in Java, mainly at the courts of Yogyakarta and Surakarta in the
early 20th century. In the second half of the 20th century the Kepatihan-style cipher-notation
became the almost exclusive means of musical notation, broadly established both in musical prac-
tice and teaching. It was developed by musicians at the court of the prime minister (patih, thus
kepatihan for the court) of Solo (Warsadiningrat 1987:165) and is strongly inspired by the notation
used in the Galin-Paris-Chevé method (Bullen 1877) of teaching music.
7 It would be technically more appropriate to say that available means of reproducing Kepati-
han-style notation in a computer-system are a) not standardized, b) use character code-points from
the extended ASCII-set that easily conflict with editors in programming languages, are difficult to
access from keyboards, and behave differently on different platforms, and c) have a display ori-
ented logic of employing rhythm markers that can be difficult to interpret by an algorithm.

Listening to Theory

135

Table 1: Comparison of Kepatihan- and VGG-style notation for simple tone succes-
sions (middle, lower and higher octave-register, no rhythmical distinctions) and
trans-notation with western musical symbols8.

Kepatihan 6532 2uty @#@7
VGG 6532 27.5.6. 2'3'2'7

Staff-notation

 The variant developed for VGG is a superset of the diacritical notation intro-
duced in Barry Drummond's edition of gendhing.9 The notational conventions
his system introduced make it possible to query gendhing phrases within in a
web-browser, and therefore must restrict themselves to a basic set of symbols
readily accessible from the keyboard in all browsers on all computer-systems.
There are two systematic differences between standard Kepatihan notation and
both the Drummond system and the VGG derivative:

8 Trans-notation to western staff notation is occasionally offered to allow a reader unfamiliar
with Kepatihan-style cipher-notation to grasp a few of its basic properties at a glance, although
many implications of western notation (e.g. pitch-representation) are highly misleading. In Kepati-
han notation there are 7 ciphers designating tone steps (originally instrumental keys) within one of
two tuning systems (sléndro and pélog). Rising ciphers refer to rising pitch and dots below and
above ciphers refer to octave register. A cipher also stands for one basic rhythmic unit, which
could be fast or slow, depending on performance context. There are horizontal rhythm-bars above
ciphers for even rhythmic subdivision and a prolongation dot, the rhythmic value of which equals
that of a tone-cipher in the same context. Tone-steps could be small (between half- and full tone),
middle-sized (between major second and minor third) or large (between minor and major third),
depending both on the respective tuning system and the step-position within the tuning system.
Instrumental tunings may be considered as comparatively flexible, adding another layer to pitch-
flexibility in Javanese music. In lack of melodic context the given examples are metrically indis-
tinct, yet an isorhythmic group of four basic beats is usually understood as being end-weighted.
End-weighted 4-beat groups (gatra) are often separated by whitespace to enhance legibility.
9 Gendhing Jawa - Javanese Gamelan Notation: http://muse.calarts.edu/~drummond/-
gendhing.html, in particular Gendhing Search: http://muse.calarts.edu/~drummond/
search2.html

 R. Schütz/J. Rohrhuber

136

• In standard Kepatihan-notation octave-dots and rhythm-bars display
above or below their tone-cipher, in the VGG derivative all diacritics follow
their tone-cipher in a fixed order.

• In order to express rhythmic values shorter than the basic beat, standard
Kepatihan-notation groups symbols in (nestable) subdivision-pairs (tone ci-
phers and the prolongation dot pin). In the VGG derivative there is no such
grouping. Instead, each tone-cipher (or pin) is followed by its own set of dia-
critical markers.

The diacritics themselves were chosen from the lower ASCII set:

Table 2 Diacritics for octave register and rhythmical values in VGG-style notation

Diacritic Description Meaning Comment

' single apostro-
phe higher octave

. period lower octave

: colon middle octave (explicit) facultative

- minus prolongation called pin

_ underscore single subdivision (half)

= equals double subdivision (quarter)

| vertical line no subdivision (explicit) facultative

 By convention, octave diacritics precede rhythmical diacritics. In both tradi-
tional Kepatihan notation and the VGG derivative tone-ciphers (1 to 7) and the
prolongation-symbol pin implicitly carry the basic relative duration 1, some-
times called sabet (≈ 'beat', lit. 'whip') in Java. Tone-ciphers and pin together add
up to the intended duration, while the subdivision diacritics modify the immedi-
ately preceding symbol. Subdivision takes precedence over duration totaling:

Listening to Theory

137

Table 3 Examples of rhythmical symbols in VGG notation

Example Octave and tone Relative duration

1-- middle 1 3

1'= high 1 0.25

1.-_ low 1 1.5

7.--_ low 7 2.5

Examples in context:

Table 4 Examples of Kepatihan balungan notation with rhythmical diacritics, their
equivalent in the VGG derivative and trans-notation of the rhythmical values.

Kepatihan j.!j6!j253. k.5k6!j@#!
VGG -_1'_6_1'_2_5_3- -=5=6=1'=2'_3'_1'

Rhythm in staff-nota-
tion

 Kepatihan style notation is in general use for balungan and has also been
adapted to other components of gamelan performance, mainly at arts education
institutions in Java. Two-voice parts are usually written on two lines. Native to
SC3 is the convention to write simultaneous intervals and chords in brackets.
Thus the expression "[2.|2:|]" represents low and (explicit) middle 2 sounding
together, each tone with the same duration 1 (explicit). Two-voice parts thus
look substantially different in the VGG derivative:

 R. Schütz/J. Rohrhuber

138

Table 5 A basic version of a céngkok (≈ 'pattern', lit. 'kind, style') for gendèr barung
leading to goal-tone 2, in Kepatihan notation, the VGG derivative and western staff
notation. The VGG notation exemplifies the special notational convention of writing
simultaneous tones in brackets.

Kepatihan
7 @ 7 . 7 @ 7 # . @ . # . @ 7 6
. . u 2 3 u 2 y . u y u 2 3 j532

VGG "72'[77.]2[37][7.2'][27][6.-3'-]
 [7.2'-]6.[7.3'-]2[32'][5_7]3_[26]"

Staff-no-
tation

 Basic drumming notation is also fairly standardized in Solo. As we are not
dealing with tone-succession, but with sounds resulting from strokes on drum-
heads in different positions and with different technique, the Kepatihan-style
ciphers cannot be used. Drumming sounds are represented with a different set of
symbols. VGG uses a variant of these symbols, with capitals for the large drum
kendhang gendhing and lower case letters for the small ketipung and middle
sized ciblon.

Table 6: Short fragment of basic drumming (kendhangan) for the genre ladrang,
illustrating differences and similarities between drumming notation common in
Solo and VGG. The trans-notation indicates a separation between core-sounds
(thung P and dhah B) and the filler (thong O).

Solonese OOPB OPBO PBjOPO BOPB
VGG oopB opBo pBo_p_o BopB

Staff-notation
thong

thung
dhah

Listening to Theory

139

 From notes to events: situating assumptions on musical knowledge

 VGG converts character sequences (Strings10) written in this notation to
the program-internal representation of event lists. Hereby, each note is
represented by an event, which, as we will see, is a more general, explicit and
extendible internal representation than strings. For the person writing or reading
a musical score, the notation systems described above are frequently more
concise and expressive. However, in some cases this method of representation
can become limiting, because masking off the complexity of the internal system
also hides its richness and reduces the accessibility of potentially useful features.

 In a way, this trade-off is closely related to the frequently discussed weakness
of any notational representation compared to the complexity and variability of
real world music. By aiming at incorporating Kepatihan-style notation into VGG
we also inherit its constraints. Let us say first that users are not bound to the use
of the VGG notation, the internal representation can always be used at any place
were Kepatihan-notation can be used. However, all static notational representa-
tions of musical events share intrinsic limitations which cannot be overcome by
increasing the complexity of the system. Perhaps more interestingly, we found
that some of these shortcomings are alleviated if notation is used within the dy-
namic framework of an audio-synthesis application. Kepatihan-style notation is
not explicit when it comes to tuning, loudness and agogic flexibility. Expressing
pattern variability in written form is cumbersome at best, and communication
processes during performance are necessarily ignored by the logic inherent in a
static visual representation of sound-structures. Yet this does not necessarily
mean that the musical structures represented in musical notation lack all musical
significance; they might still aptly represent a vocabulary used by communicat-
ing musicians in context.
 As we will see once we have gained an overview of the framework, VGG
embeds notational information in a much more situation-dependent system of
rules. The internal representation of notes, the event, acts as a dynamic medium
in which knowledge can be captured incrementally. As a result, we are able to
represent musical knowledge both within a specific set of competences and in
the context of a given moment.

10 SC3 class-names or code-examples are typographically marked by using a fixed-width font.

 R. Schütz/J. Rohrhuber

140

 Generative principles in VGG aim to be as generic as possible. The goal is
not to reproduce a specific performance statically with maximum precision. In-
stead, we attempt to model the general principles common to many perform-
ances while leading to different results in individual performances. We don’t
consider essential aspects like variability, agogic fluctuation and interaction as
obstructions to using notation, but rather as complements, operating on different
levels that jointly contribute to the manifestation of music as a product of cultur-
ally bound human activity. An audio-synthesis application like SC3 provides
means both to model generic operational principles like variability and interac-
tion and to store static patterns in data structures of theoretically any required
degree of complexity. So rather than avoiding the use of notation we anticipate a
process in which a symbolic system for the representation of static patterns con-
tinuously develops to complement the dynamic processes in which they are em-
bedded in a more adequate manner. Requirements of the VGG implementation
have already led to modifications to the initial set of symbols. As a starting point
for a symbolic system used to store static data within the VGG framework we
consider Kepatihan-style notation, which has evolved within the music-culture
we are exploring as the most appropriate option.

SuperCollider lingo

 Dictionaries and event-streams

 Resembling a taxonomy tree, a Dictionary is a data structure that allows us
to organize contextual information flexibly and to use meaningful category
names in the system implementation itself. By means of nested key-value pairs,
we may represent data in a way that maintains their specific frames of reference.
For instance, the levels of a dictionary containing the balungan of gendhing
could be pathet (≈ ‘tonal mode’), form, name and segments:

Listening to Theory

141

Figure 1: Structure of a dictionary containing balungan notation of gendhing,
exemplified for Ladrang “Wilujeng”, pélog pathet barang

gendhing

pathet: p7

form: ladrang

name: wilujeng

segment: buka

segment: ompak

segment: ngelik

This dictionary, together with values for the lowest-level keys would look like
this in SC3 code:

Figure 2: Dictionary entry for Ladrang “Wilujeng” pélog pathet barang. Subordina-
tion is encoded by nested parentheses, coordinated entries are separated by com-
mas

(
 gendhing: (
 p7: (
 ladrang: (
 wilujeng: (
 buka: "7.32 6.7.23 7.7.32 - 7.5.6.",
 ompak: "27.23 27.5.6. 33-- 6532 5653 27.5.6.
 27.23 27.5.6",
 ngelik: "--6- 7576 3567 6532 66-- 7576 7732
 –7.5.6."
)
)
)
)
)

 R. Schütz/J. Rohrhuber

142

 The segments could be further subdivided into subsegments, or generally
speaking, there is no limit to the branching depth of dictionaries, the hierarchical
structure may be freely adjusted to descriptive requirements.
 The internal representation of a sound-event in SC3 is also structured as
dictionary. For example, the notation-parser could convert tone 6. to the follow-
ing representation:

Figure 3: Tone 6. in a very basic event-representation

(
degree: 6,
 dur: 1,
 octave: 4
);

 In dictionaries, the order of items within a hierarchy-level is not fixed.
Querying a dictionary, we cannot rely on the order of items, but instead, the key
is used to retrieve a specific value. In situations where a fixed order is essential,
we can use arrays, which are enclosed in brackets. The tone-sequence 27.5.6.
would look like this:

Figure 4: Basic representation for the tone-sequence 27.5.6. The event-dictionaries
have a fixed order and are thus enclosed in brackets.

[
(degree: 2, dur: 1, octave: 5),
(degree: 7, dur: 1, octave: 4),
(degree: 5, dur: 1, octave: 4),
(degree: 6, dur: 1, octave: 4)
]

 If we use this array of dictionaries for sound synthesis (which would assume
a lot of additional data not shown here) it would usually result in a sequence of
four tones. If played with gamelan sounds, at a reasonable speed and with a pé-
log tuning, a competent listener might already interpret it as a meaningful musi-
cal segment: one (end-weighted) gatra of balungan in pélog barang leading to
the goal tone low 6. The listener might associate pieces where this pattern occurs
and other parts that paraphrase the tone-sequence. Conversely, a listener not

Listening to Theory

143

accustomed to this music might construct a beat at the beginning, consider the
tuning as awkward and have none of the associations mentioned above. The
computer system knows nothing of the meaning this sound sequence obtains in
the mind of listeners. As our aim is to model musical competence within central
Javanese gamelan music, we have to add such information to the physical sound-
information in order to be able to reason about and operate with all the associa-
tions sound creates in the competent listener. To make it available for evaluation
and experiment, we have to make such implicit knowledge explicit within the
system. Event-dictionaries in SC3 are not limited to physical sound parameters,
in fact they are not limited to anything given by the system, they are freely ex-
tendable by user-defined data, provided it can be represented in the form ‘key:
value’. This could be numerical data as well as lexical data and data-type names,
enabling semantic criteria to be translated into actions in the processing of event-
streams.

 Classes and objects, patterns and streams

 The system is specified in the form of so-called classes, which are general
descriptions of objects; little specialized and encapsulated programs that conduct
certain tasks required in a specific context. A class acts as a template, defining
the characteristics and behavior of objects derived from it. For instance, each of
the above event-dictionaries is an object. The class Event defines their common
behavior (for example that they contain key-value pairs). Each class can be used
to create multiple independent objects. The VGG implementation comes with
many classes tailored to specific aspects of central Javanese gamelan music.
Their names were chosen to be recognizable: either English terms, or – if the
musical concept encapsulated therein appeared specific to Javanese gamelan-
music – in Javanese terms.
 A stream is a specific kind of object for generating or modifying other ob-
jects dynamically. So in order to create a sequence of event objects, we do not
need to write them out individually, but may instead provide a rule that gener-
ates them. This also means that the sequence need not be known in advance, and
that it may be defined as never-ending. The internal dynamic behavior of the
VGG system is determined by numerous such streams which incrementally gen-
erate and modify sequences of events. Because one often needs multiple inde-
pendent variants of the same stream, there is a way to describe streams in the

 R. Schütz/J. Rohrhuber

144

abstract: this is what is called a Pattern11. Thus, from a single pattern multiple
event streams may be created, and thus multiple melodic lines. The system re-
mains open to parallelization at all times. Additionally, since one pattern may
derive from another pattern, this strategy is very useful to express how one
stream modifies or depends on the output of another stream. In particular, one
may think of an event pattern as an abstract description of a dynamic process
that generates a sequence of event-dictionaries.
 Since one of the aims of VGG is to give explicit access to assumptions about
competences deemed necessary for successful music performance, patterns are
an appropriate way to structure such a system. The pattern Pgongan e.g. keeps
track of the current position of a performance relative to the main formal and
implicitly metrical unit of central Javanese gamelan music, the gongan-period. It
adds orientational properties to each event within an event-stream. After being
processed by Pgongan, the event-stream from above could look like this:

Figure 5: Event-stream notation for 27.5.6. after being processed by a stream de-
fined by a Pgongan.

(degree: 2, dur: 1, octave: 5, gonganDur: 32,
gonganPhase: 4, sabet: 5)

(degree: 7, dur: 1, octave: 4, gonganDur: 32,
gonganPhase: 5, sabet: 6)

(degree: 5, dur: 1, octave: 4, gonganDur: 32,
gonganPhase: 6, sabet: 7)

(degree: 6, dur: 1, octave: 4, gonganDur: 32,
gonganPhase: 7, sabet: 8)

 These orientational properties express elements of contextual knowledge. For
example, they are required in order to define positions where activities like
speed changes should start or end. By serving as disambiguating properties or
constraints, they also become meaningful in the generation of parts.

11 Unfortunately the dynamic, operational understanding of the word ‘pattern’ within SC3 col-
lides with the musicological use of pattern as a static tone- or sound-sequence. A pattern within
SC3 is static only insofar as it is a description of a generator for a sequence (a stream); this stream
itself may vary, while its description, the pattern itself, remains outside of time. We have to ask the
reader to rely on the context to identify the current use-mode of the word.

Listening to Theory

145

 Step by step, on their path through the system, the event-dictionaries passed
between streams accumulate specific additional information, such as their pa-
thet, the current irama or the instrument they are meant to be played on. From a
conceptual point of view, each of them represents a sound event, including tem-
poral parameters such as the sound's duration and the inter-onset time (dur).
This is the reason why such dictionaries are called events, despite the fact that
they may represent events that never happen, or events that are combined to later
form one composite event. The VGG implementation is strongly based on the
event-stream model of SC3. We thus may consider the basic entity of the system
to be series of events, representing temporally ordered sets of sounds, or more
generally, the musical knowledge about such sounds. This has two essential
implications: a) we are in full control of the properties we want to add to a
sound-event because we are free to define custom properties using any termino-
logical paradigm required, and b) each event is autonomous, it contains its own
complete set of properties that describe its sound.
 In short, playing a piece in such a framework basically means letting the
notation-parser create an initial basic event-stream from balungan and, by ap-
plying patterns that may add or modify properties, creating further streams. Ad-
ditional patterns can define operations relative to the modified patterns or to the
same input pattern (branching, parallelization). The streams derived from these
patterns will be modified accordingly. The concurrent event-streams resulting
from chaining and branching can subsequently be processed independently. This
allows the larger system to maintain independent bundles of event-properties to
be localized – and situated – in different streams of events (see fig. 6).
 Streams represent a lazy computation scheme, meaning they may operate
incrementally – a stream need not wait until its input stream finishes processing
its entire sequence. Instead of this, streams receive one event at a time and pass
it on, as soon as it has been processed, which usually is much faster than the
duration of the sound event itself. Therefore many streams can operate within
the timeframe given by the effective duration of an event. In some cases, this
basic one-in and one-out logic is complicated by the fact that streams have to
evaluate more than a single event in order to process the current event. Then,
one of the stream nodes has to accumulate a number of events by computing a
little bit ahead of time.

 R. Schütz/J. Rohrhuber

146

Figure 6: Schematic illustration of the branching of event-streams caused by apply-
ing patterns to them. An initial basic stream is created from Kepatihan notation.
Patterns describe streams that modify the input stream and create a new one. A
single pattern can serve as basis for several derived patterns (pattern B and C from
pattern A). The resulting streams B and C share properties of the basic stream and
stream A, but contain separate properties described by patterns B and C respec-
tively. All 4 streams remain available to the system.

basic event-
stream

notation-parser

mod. event-
stream A

pattern A

mod. event-
stream C

mod. event-
stream B

pattern B
pattern C

27.23 27.5.6. 33-- ...

 Generally, realtime processing is mandatory for two features of the system: to
allow a user to interfere with the ongoing sound – which therefore must not be
predetermined too far ahead – and to model interaction among musicians, which
can also interfere with the default progression of a performance at any moment.
This can require tight timeframes between recognition and reaction. Given the
importance of anticipation in music praxis, it can be hardly surprising to en-
counter contradictions between different levels of adaptive behavior. A stream
may need to look ahead to what comes in the future of its input stream, while a
choice predicated upon such an ‘expectation’ may preclude a reaction to a sud-
den change from the outside. This tension is not merely an artifact of the tech-

Listening to Theory

147

nology; it is partially a reflection of a similar tension within the realm of ga-
melan performance practice. As such, it is an interesting area for realtime explo-
ration and experimentation, even if such experimentation demonstrates that
“realtime” is not as real as one would maybe like it to be.

 Tags

 Let’s consider the basic units for adding to the flow of events in the system.
Events and dictionaries, which here mainly differ in usage and not in functional-
ity, are composed of simple associations between keys and values. What we call
tags are quasi-lexical units represented as a key-value pair 'symbol: Boolean'
(e.g. goToNgelik: true) which can be fed into an event-stream. This means
that they become a property of each event in their stream. Tags can be set and
removed in realtime and become localized in time by the events they are bound
to. As tags are encapsulated in their respective event-stream, concurrent streams
(like different parts playing together) can contain different sets of tags, but may
also share them. Setting tags in realtime typically happens in one of two ways:
either as a result of external intervention or by actions specified by musical pat-
terns, for example to trigger change in the program flow conditionally. As a
convention, we therefore distinguish external- and internal tags.
 External tags operate indirectly. Rather than triggering a ‘switch to ngelik’, or
a set of activities necessary to ‘end a piece’ directly, they only trigger the first
musical signal that initiates the larger process. The next step is triggered by the
recognition of the musical signal in a pattern called Preact, which in turn could
trigger more signals by the means of internal tags. The external tag thus resem-
bles the decision of a musician responsible to initialize a change, leading to a
musical signal that propagates to other musicians. External tags are preceded by
the prefix mc12 (Figure 7). The most common external tags can also be set in a
simple graphical user interface for playback .

12 Abbreviation of ‘master of ceremonies’, inspired by the MC [emsi] at Javanese weddings.
External tags could also be seen as representing outside requests. Bp Emsi ('Mr. MC') has gained
some notoriety among musicians for making difficult requests, and for overriding their decisions
in order to adjust the performance to unexpected ceremonial developments, or to expose his capa-
bilities as singer, comedian or the like.

 R. Schütz/J. Rohrhuber

148

Figure 7: Examples of the syntax used to set and unset tags manually

event-stream.tagable.tag = (mcGoToNgelik: true);
event-stream.tagable.tag = (mcDoSuwuk: true);
event-stream.tagable.tag = (mcGoToNgelik: false);
event-stream.tagable.tag = (mcDoSuwuk: false);

 Internal tags are the result either of pattern-recognition or of another type of
evaluation of the flow of a performance, e.g. orientational information (which
beat in which gongan) or speed-change information. While internal tags can be
set and unset manually in almost the same manner as external tags, this is more
risky, because internal tags are often part of a complex chain of events triggered
by, and depending on one another. The internal tag goToNgelik, triggered by
the recognition of a ngelik-signal simply switches to another segment, but the
internal tag suwuk (≈ ‘end the piece’) for a gendhing like ladrang Wilujeng
triggers a chain of events stretching over more than one gong-period, and in-
cluding several speed changes, a context-dependent segment switch, changes in
drum-patterns and dedicated behavior towards and at the final gong (Figure 10).
More importantly though, internal tags are not intended to initialize activities
modeled to be results of interaction. They are just the messengers of decisions
resulting from the playing and recognition of musical signals.

Modeling a gendhing

 In the following, we will cover the basic components of the framework by
example of modeling a gendhing. This overview explains what components are
required to achieve this and how these components are combined. VGG being an
open framework, both these components may be replaced by different, possibly
more refined versions, and may be combined in entirely different ways. Giving
an account for one possible implementation, we hope to make it reasonably easy
to develop new models, as well as to use and complement the given one.

Listening to Theory

149

 Performance flow

 Before starting playback, we have to set some general initialization parame-
ters like speed, volume and instrumentation (or accept defaults) and select a
piece from the mentioned dictionary of gendhing.

Figure 8: Some initialization parameters to be set before starting playback of a
piece

g.gendhing.pathet = \p7;
g.gendhing.form = \ladrang;
g.gendhing.name = \wilujeng;
g.gendhing.gonganDuration =
g.gongan.[g.gendhing.form].gong[0];
g.gendhing.bukaDuration =
g.gendhing.notation.buka.eventDuration;
g.gendhing.segments = g.gendhing.notation.keys.asArray;
g.gendhing.initialTempo = 1.8;
...

 Balungan-notation is usually split into the segments a gendhing consists of
(e.g. buka ‘opening’, umpak ≈ ‘transitional part’, ngelik ≈ ‘vocal part’) which
can also be nested in substructures (e.g. a ngelik containing several gongan). We
need a functionality that brings segments into the required order and follows
each substructure. As neither the amount of repetitions nor segment succession
is predetermined, a method is required to dynamically decide how to continue at
each segment border (most often at a gong). While there is always a default or-
der at each position of choice, musicians can choose an alternative path, e.g. in
order to adjust to an unexpected occurrence in the context of the performance.
Even if the default order is maintained, segment succession is reinforced by mu-
sical signals played by musicians whose musical roles include this responsibility.
 A common case is a branch-signal, played to indicate a switch to a segment
called ngelik, in which metrically bound singing of classical poetry steps to the
foreground.13 The signal is played by the bow instrument rebab, and in its ab-

13 The importance of musical signals for organizing performances in Javanese gamelan-music
has been pointed out frequently. Heins (1970) puts a focus on wayang accompaniment and the

 R. Schütz/J. Rohrhuber

150

sence by the gong-chime bonang barung. Other parts14 can also reflect or antici-
pate the shift to the high register, from which ngelik-singing usually starts. Ac-
cording to Javanese musicians it is primarily the responsibility of the rebab to
indicate the switch. In actual practice we can observe that the rebab generally is
the first to rise, while the bonang is the most widely audible part among those
that can reflect the register-switch in their playing style. It is noteworthy that the
ngelik-signal itself is not a dedicated pattern used exclusively as branch-signal,
but a pattern reflecting high register in a melodic context, where unmarked
playing would imply a low register. This is interesting in itself, but also poses a
challenge to pattern-recognition, because the object to be identified is not just a
fixed tone-sequence, but a defined difference in garap (lit. ‘treat’, ≈ ‘part-gen-
eration’) that could manifest itself in many different surface-forms. Realtime
pattern-recognition (on a symbolic level) is one of two important mechanisms
that trigger setting a tag, which in turn may determine the segment played next.
In figure 9 we see how the tag ‘goToNgelik’ controls segment succession. The
ruleset15 contains two blocks containing succession rules (associations denoted
by an arrow between two objects) for all segments of the performed piece. If the
‘goToNgelik’-tag is set while a segment switch is approaching, the block
headed by ‘goToNgelik: true’ will be evaluated, if not, the default rules apply
(headed by an empty event-dictionary ‘()’).

interaction between dhalang (‘puppeteer’) and musicians, and Brinner (1995) describes them
within a general framework of musical interaction.
14 bonang panerus, gendèr barung, gambang, siter, gendèr panerus, suling, sindhénan, if present
gérongan and sometimes also kenong and kempul
15 As opposed to the gendhing Dictionary, rules are stored as Array, which is indicated by
their enclosure in brackets [] rather than braces (). As opposed to a dictionary, the elements in an
array have a fixed order. This makes sure that every condition is applied in a deterministic order.

Listening to Theory

151

Figure 9: Succession-rules for a simple form containing the three segments buka
(‘opening’ – played only once), the unmarked gongan umpak (≈ ‘transitional sec-
tion’) and the vocals dominated gongan ngelik (lit. ‘make small’ i.e. ‘become high’).

g.gendhing.segmentSwitch = [
 (goToNgelik: true) -> [
 \umpak -> \ngelik,
 \ngelik -> \ngelik,
 \buka -> \umpak
],
 () -> [
 \umpak -> \umpak,
 \ngelik -> \umpak,
 \buka -> \umpak
]
];

 Ending a gendhing requires a decision – otherwise the performance would go
on forever by repeating one or several gongan over and over. The decision to
come to an end could come from outside or from a musician, usually the drum-
mer. In a composition like Ladrang “Wilujeng”, performed with gérongan in the
ngelik, a default suwuk (≈ ‘process of ending a piece’) would be initiated by the
drummer well before the start of the last ngelik and stretch over almost 1.5
gongan (Figure 10). In this case a slight speedup (ngampat) at a defined position
becomes the signal for all musicians that the piece is going to end at the next
default opportunity. This results in an obligation to switch to the ngelik at the
next opportunity because the piece should end there. Therefore the rebab has to
signal the ngelik before the gong (it usually has the choice to signal ngelik) and
other garap-parts reflect the signal by switching to high register as well. This
behavior is made obligatory by the initialization of suwuk by the drums, but it
doesn’t outwardly differ from a normal switch to ngelik, except that it is per-
formed at a slightly increased speed. While the garap-instruments switch to high
register the drummer plays a special pattern16 to the gong, which is only used
towards the penultimate gong, thereby reaffirming the impending end at the next
gong. Another modification of standard drumming to reinforce suwuk can be

16 The drum-pattern towards the penultimate gong in ladrang kendhang kalih .B.P.P.B.P.gB is
taught at ISI-Surakarta but not always used in other communities.

 R. Schütz/J. Rohrhuber

152

used towards the second kenong in the ngelik.17 The final phase of the suwuk is
initiated towards the third kenong by continuously slowing down until the final
gong. The slowing down is controlled by the drummer who uses a dedicated
pattern. During the slowdown musicians with subdividing instruments do not do
an irama-switch, as speed would require in a default situation, and all instru-
mentalists wait with the last tone for the strongly retarded gong to be hit first.18
 This description of the way to end Ladrang “Wilujeng” can be used to end all
pieces of comparable build (form and performance mode) if implemented in a
generic way, i.e. not bound to a static reproduction of Ladrang “Wilujeng”, but
formulated in terms that can also be applied to other pieces (Figure 10). The
actual steps to be taken (use dedicated kendhang-patterns, speed up or down at
certain positions relative to the gongan, branch because of impending suwuk,
etc.) are formulated programmatically in a way that can be reused and modified
centrally if so wished. Most importantly the process is not modeled as a fixed
sequence of occurrences, triggered once by an external tag, but as a process
which at two points depends on a mechanism that a) creates a musical signal and
b) recognizes this signal by evaluating its symbolic representation, without re-
lying on the initial trigger.

17 Adding a .P.B before the default .P.B.jKIP.nB
18 Vocals, especially the pesindhèn (‘female solo vocalist’), play a central role in the coordina-
tion of the timing during the last tones and for the final gong. It is outside of the scope of this
description to follow this up, and outside of the possibilities of the VGG implementation to model
such interdependencies, as vocal parts are not implemented yet. Suwuk without vocals can be
observed in ensembles that don’t employ vocalists (e.g. bonangan).

Listening to Theory

153

Figure 10: Slightly simplified representation of the most common, unforced way of
ending a piece like Ladrang “Wilujeng” with vocals of the poetical form salisir in the
ngelik. The process is initiated by the external tag mcDoSuwuk and continued by
signals triggering two internal tags (suwuk and goToNgelik). Timing is controlled
by evaluating orientational tags (current segment and current position in gong-pe-
riod in beats [sabet]), continuously supplied by the class Pgongan.

slight
speedup

pattern:
reinforce
suwuk

rebab:
switch
register

Segment G-Pos

Umpak

Ngelik

mcDoSuwuk: true

suwuk: true

garap-instr. & vocals:
reinforce high register

 all parts: enter ngelik

goToNgelik: true

User-Intervention Pattern-recognition: Preact

Drums

percussive-
iterating

instruments:
don't switch

irama

gong: delayed

reinforce
suwuk

start and
continue

controlling
final slow-

down;
pattern:
reinforce
suwuk

all parts: wait for
delayed gong

12

22

32

20
21

26

28

32/0

Tags

Orientation

 R. Schütz/J. Rohrhuber

154

 Irama and speed

 The interrelation of speed and irama (≈ 'speed/subdivision-level') are handled
by the pattern class Pirama. The stratification of the musical texture into layers
of different beat subdivision levels is an eye-catching feature in central Javanese
gamelan music.

Figure 11: Two irama-levels with balungan, exemplified by schematic realization of
the gong chimes bonang barung and bonang panerus. Both instruments play with
the same beat density on both irama-levels, yet with twice as many tones per
balungan-tone in irama II. At some point of an (usually continuous) irama-transition
the subdividing instruments will snap back to their idiomatic beat density.

2 u 2 32 u 2 32 u 2 3
2u 232u 232.232.2u

2 u 22 u 2 32 u 2 32 .2 32 .2 u
2.2u 2.2u 2.2u 2u2u 2.23 2.23 2.23 2323

irama I

irama II

balungan

bonang barung

bonang panerus

balungan

bonang barung

bonang panerus

3

 While most of the time a gamelan plays at one of various static speed-levels,
there are phases of transition, where the entire ensemble either slows down or
speeds up until it reaches a new static speed level, which usually is close to half
or double of the previous speed (as measured by balungan-beats). This process
is often called irama transition. While some parts, e.g. the balungan, simply go
along this change, others switch their subdivision-level to half or double to com-
pensate for the speed change. Because of this behavior it is sometimes difficult
to tell whether a gamelan plays faster or slower after a transition. If the new
static speed-level is less than half the previous speed, all instruments that ‘snap
back’ could be described as playing faster than before while the balungan (and
interpunctuating instruments) have slowed down considerably. The same para-
dox holds for the opposite speed change direction. In fact the slowest speed level
from the perspective of balungan, the rangkep (lit. 'doubling') of irama wilet
(often just called irama rangkep or irama IV) is often seen as the fastest playing

Listening to Theory

155

style, because the percussive garap-instruments play with a higher beat-density
than on other irama-levels. So if talking about speed in Javanese gamelan music
it is necessary to make explicit which irama and part we are referring to.

Figure 12: Schematic illustration of an irama-transition from \ir1 to \ir2. The
gong-chimes bonang barung and panerus snap back to their idiomatic stroke-den-
sity once the balungan-speed has stabilized on a level close enough to half of the
initial speed, such that snapping back can result in an idiomatic stroke density.
Consequently the pulse resulting from the summation of all parts also returns to its
initial speed or density. Practice isn’t necessarily as systematic as indicated here –
players do not always switch at exactly the same moment, nor necessarily at the
end of a 4-tone-group (gatra). The duration of the transitional phase, as controlled
by the drummer (pengendhang), may differ substantially. The actual timing of this
interactively controlled transition isn’t well understood yet. We hope that, in the
future, the VGG implementation can help to gather some more insights.

u 32
2

u
3

2
232u2

2 u 2 3
2 u

2 32 .2 3
22 u

2

2 u2 .2 u
2.2u 2.2u 2.2u 2

balungan

bonang barung

bonang panerus density snap-level b

density snap-level a

summation pulse

VGG distinguishes five irama-levels by defining different speed-bands relating
to one beat of balungan mlaku19. The fastest (\ir0) and slowest level
(\rangkep3) only require the definition of one threshold to their inner neighbor
– the three inner levels have an upper and a lower threshold. In order to reduce
the risk of instability (jitter) during transitions, or when micro-rhythmic varia-
tions occur around thresholds, the system distinguishes between thresholds while

19 Balungan mlaku is generally considered the default balungan density. It is usually notated as a
succession of ciphers without any rhythmic diacritics (e.g. 27.23) while its sibling, the sparser
balungan nibani, is notated with interleaving prolongation-dots (e.g. 2.3.). One way of defining
balungan mlaku without reference to notation is by relating it to the gong period of a specified
form: a gong-period of the form ladrang consists of 32 balungan mlaku or 16 balungan nibani
beats. The definition is clear when bound to either irama 1 or 2 and can - e.g. because of conflict-
ing notational traditions (which in turn might reflect perception shifts) - become blurred in irama
3. This discussion lies outside of our current scope.

 R. Schütz/J. Rohrhuber

156

speeding up (higher) and slowing down (lower). This seems to agree with actual
musical practice: in a downwards transition, musicians tend to switch rather late
in a relaxed manner, reinforcing the new irama only once it has almost been
reached. This prevents both an impression of haste and does not push the drum-
mer during slow down. Therefore the downwards-threshold is close to the target
speed (see Figure 13, the lower band. The threshold values are represented in
white, the target speed in black color). In an upwards-transition players tend to
switch earlier (relative to the target speed). The accelerated pulse quickly be-
comes too fast to be played, but musicians tend to switch even earlier than their
technical reserves would allow, both to prevent the impression of haste and to
ease and reinforce the speedup (see Figure 13 upper band). The speed at the
threshold will nevertheless be higher than during downwards transitions.
Switching late also allows distinguishing a proper irama-transition from a slight
speedup to, e.g. to initiate the ending of a piece, or to adjust to contextual re-
quirements in a dance or puppet-play (see fig. 13).
 Speed is not the only factor determining the moment of actual switch in an
irama-transition. An interfering factor is the principle of pattern-integrity. A
threshold might be passed in the middle of a pattern that has a melodic conclu-
sion. Switching exactly when the threshold is passed could break the melodic
conclusiveness. The current VGG implementation always concludes a pattern
before a part switches irama. As a consequence, parts sometimes switch at dif-
ferent moments – an occurrence that can also be noticed in actual practice. Yet
the implications are deeper, because a) patterns might have an internal break-
point due to sub-segmentation and b) because we can also observe some players
trying to find creative solutions for the wish to switch close to a felt threshold,
obviously in order to reinforce the new irama from an as appropriate as possible
moment onwards.
 Within general usage, automatic irama switching just works in the back-
ground. Dedicated experiments would probably start with fine tuning thresholds
and refactoring the model. It is not very probable that thresholds are the same
among different forms, genres and performance-contexts of gamelan-music.
Thresholds might also depend on the starting speed of a transition. Another point
of interest not mentioned so far is the profile of transition curves, which will be
discussed in the context of a separate model of interrelating clocks (see p. 176).
There are many open questions as to the adequate parameters of speed gradients.

Listening to Theory

157

The current state may be seen as a starting point from which to explore these,
based on evaluation by competent musicians.

Figure 13: Schematic illustration of the model underlying switch-thresholds in
irama-transitions in the VGG implementation. Each irama-level (\rkp3 to \ir0) has a
stable speed-bandwidth (deepest black). The upper band shows thresholds (white)
during upwards transitions, the lower during downwards transitions. The grey-
shaded areas between stable bands are only traversed during transitions.20

stable switch-thresholdtransitory

speedup

slow down

balungan speed fastestslowest

\rkp3 \ir3 \ir2 \ir1 \ir0

20 The very senior Solonese musician Bp. Mujiono, who likes to entertain his co-musicians by
leading the gamelan on the drums through very uncommon and unexpected transitions and speeds,
once had a spectacular success at a klenèngan at the home of Bp. Rahayu Supanggah (Benawa,
2003), when drumming ladrang “Pangkur” in a most unexpected manner. While he is known for
entering irama rangkep unusually often and in the most unexpected places, in this performance he
surprised everybody by doing the opposite in a piece where a drummer has the opportunity and is
expected to demonstrate his originality, amongst others by using rangkep a lot. Bp. Mujiono’s first
surprise was that he only started the first transition into rangkep at the most common place to-
wards the first kenong in the ngelik. While this would be normal for most drummers it is impossi-
bly conformist for Bp. Mujiono. Yet he made up for this “shortcoming” instantly by never slowing
down far enough to conclude the transition and enter rangkep, while it had already become too
slow for irama wilet. Bp. Mujiono kept his co-musicians in this unstable state between irama III
(wilet) and rangkep, and stayed there for almost two gongan, without ever - and that is very un-
usual for ladrang “Pangkur” too - stopping to allow for a solo of one of the female singers
(andhegan ‘stopping’). The performance was accompanied by frequent exclamations of amused
irritation and ironic protest by the musicians. On a transitory speed-level, musicians continuously
expect the conclusion of the transition (which Bp. Mujiono never allowed to happen) and become
unsure at which subdivision-level to play. Next to being a priceless example of extravagance in
klenèngan it helps to demonstrate that unstable speed-bands between irama-levels do exist.

 R. Schütz/J. Rohrhuber

158

 Pathet and tonality

 Many gendhing, especially more popular ones, can be played in several pa-
thet. Accordingly, many céngkok can be transposed a step up or down as well as
be used in both tuning systems sléndro and pélog. This circumstance, which
poses quite a challenge to a Western notion of melodic identity, is better under-
stood in its general outline than in its details. We can't always easily tell why
certain pieces or céngkok can be transposed and others not, whether small
changes in transposed céngkok should be considered a part of a general fuzzy
variability, part of an instrumental idiom, a result of general tonal dynamics, or
simply part of – not necessarily homogenous – traditional convention. Addi-
tional phenomena that add to complexity are temporary shifts of the tonal centre
or tonal ambiguity, minir in sléndro, where only rebab and voice use shifted
tones, and momentary alterations in pélog, which can sometimes cause a scale-
split between pentatonic garap-instruments and the rest of the ensemble.
 On the implementation side, we want to avoid writing rules and patterns in
several pathet if they can be derived from one another by transformations. This
keeps data-sets smaller, simplifies their maintenance and is a significant step
towards modeling tonality in Javanese gamelan music. On the other hand there is
a risk of over-generalization: if some forms of céngkok are bound to a certain
pathet or context, we cannot transform them together with other, more generic
ones. Therefore we need to be able to specify the tonal scope of a rule.
 Such specifications are also a prerequisite for the possibility of playing back
pieces in a different pathet than their source notation. Principally there are two
options: either the balungan is transformed first and parts are generated from
that new base, or transformation is done during part generation. The first strat-
egy seems more straightforward, it basically only requires a few tables defining
how tones are mapped in a transformation. Cases though, in which plain tone-
per-tone mapping does not lead to the required results because shift of mode
and/or tuning system also causes a change of tone successions in the balungan,
require additional means of transformation. Such changes can be handled by the
rewrite system used for part-generation described in the next chapter. As said
above the rewrite-system aims at reducing the amount of necessary rules by do-
ing pathet normalization where applicable and therefore also offers the option to
transform between tuning-systems and/or transpose between modes. As the use
of a rewrite-logic is required anyway to cover cases in which balungan changes

Listening to Theory

159

melodically in transformations, it might thus be more efficient to do such trans-
formations during part generation.
 Transforming a piece between the heptatonic tuning system pélog and the
pentatonic sléndro is straightforward only if we know that the pélog version
consistently uses a pentatonic subset of the heptatonic scale. In this case the no-
tational conventions of Kepatihan notation are such that the tones mapped in a
plain transform between the two tuning systems are designated by the same ci-
phers, except of course for pélog 4 and 7, which do not exist in sléndro. Yet for
consistently pentatonic pélog pieces the transform from pélog to sléndro is nev-
ertheless straightforward, as 7/1 and 4/3 never concur in such pieces. 7 thus
maps to sléndro 1 and 4 to sléndro 3. When transforming from sléndro to pélog
the traditional pathet designation often, but not always allows identifying the
pélog tone to be chosen among the two alternatives. The situation is further
complicated by the fact that many if not the majority, especially of larger pélog
gendhing use more than 5 tones. The most common case is an alteration of high
1 to the lower 7 at the apex of a melodic contour. Alterations between 4 and 3
are less predictable, and sometimes, though rarely, a high 4 should be mapped to
5 rather than 3 in a pentatonic reduction. Except for this last case transformation
from pélog to sléndro should be straightforward, yet the result need not neces-
sarily be pleasing for competent musicians. As said above, the factors determin-
ing whether certain transforms are possible or not are not well understood yet.
We have a traditional body of pieces existing in various pathet, experimentally
generating transformed pieces not documented by tradition could help to under-
stand better, which factors prevent transformations.
 An additional challenge for refinements of the treatment of pathet by the
system is the handling of traditional pathet-assignment, which does not conclu-
sively contain the tonal information required for part generation. Some pieces in
pélog pathet nem follow the manyura logic of tonal relations among céngkok
and parts, while others follow the sanga-logic. This means that traditional pathet
assignment can be ambiguous in a feature essential to pattern-generation in ga-
rap parts. Additionally, quite a few gendhing have momentary shifts of their
tonal center, or have tonally ambiguous segments, i.e. segments that are treated
differently in tonal respect in different performances, or by different players.
While it might be possible to disambiguate such cases in the rewrite system by
evaluating long contexts and metrical constraints, it might as well turn out to be
necessary to subcategorize pathet with secondary tonality specifications. The

 R. Schütz/J. Rohrhuber

160

latter approach is more straightforward because it does not assume that tonal
disambiguation can always be done by context-evaluation, but requires piece-
specific additional information to be added either to the source-notation or to
dictionaries complementing traditional notation.

 Part generation and the rewrite system

 Parts are generated in realtime by means of VGG's rewrite system imple-
mented in the class Tafsiran (lit. ‘interpretation’). Rewrite-rules are formu-
lated as associations which are evaluated in a fixed order. An association binds a
match-key to a rewrite-value. A match-key in its simplest form is represented as
a sequence of tones in VGG notation. In order to produce valid results, the dura-
tion of match-key and rewrite-value have to be identical21. To derive a pattern
for bonang barung from balungan we would write:

"27.5.6." -> "27.5.5.5.7.--5.7.5.-6.6.7.6."

 Order in matching events

 Both match-key and rewrite-value may have various forms, and may be
recursively nested. The rules are listed in arrays and thus are evaluated in a fixed
order. The first key to match returns the rewrite-value (see fig. 14).
 The relevance of match-order becomes apparent by comparing associations 1,
2 and 3 in Figure 14. In absence of the first rule the bonangan for balungan
"27.5.6." would be generated by matching "2.7." first, and "5.6." in a
second run (associations 2 and 3). Yet it is preferable to use the pattern returned
by association 1. If "2.7." or "5.6." occur in different melodic context, e.g.
"2.7.23" or "5.6.7.6.", the output of the associations 2 and 3 is valid. Thus
more specific associations are positioned in front of more general ones, to make
sure they are matched first.

21 The rewrite-system assumes that the duration of match-key (more precise: replacement win-
dow, see below) and rewrite string are identical. It will scale any duration of the rewrite-string to
the duration of the replacement window within the match-key. This prevents loss of synchrony
caused by errors in rewrite strings, but more importantly adds some notational flexibility: rewrite-
strings, consistently written at double- or half-time, will also be rendered correctly.

Listening to Theory

161

Figure 14: A small array of rewrite-rules to demonstrate the relevance of match-
order

(irama: \ir2, pathet: \p7) -> [
 "27.5.6." -> "27.5.5.5.7.--5.7.5.-6.6.7.6."
 "27." -> "27.2- 27.27.",
 "5.6." -> "5.6.5.- 5.6.5.6.",
 "33--" -> "3.3.[3.-3-] 3.[3.-3-]3. [3.-3-]3.[3.-3-] 3.[3.-3-]",
 "33" -> "3.3.[3.-3-] 3.[3.--3--]"
]

 Broadening scope with variables

 Comparing associations 2 and 3 reveals some redundancy. While the keys
differ, both share the same derivation-principle: the tone-pair of the match-key is
repeated four times, the 4th tone of the resulting string is left out, and the dura-
tion of the third tone duration is doubled. Such a derivation could also be gener-
alized by using a single Function that processes any tone-pair.22 VGG offers
another way to define such derivations in a general manner which keeps close to
the syntax used to formulate associations. It uses letters as variables for tones, or
technically speaking, as variables for a single Event of arbitrary tone degree and
duration, both in key and value. The following association will cover above as-
sociations – and any tone-pair – with a single rule:

"ab" -> "aba-abab"

 Associations of this degree of generality can be expected to be strongly over-
generalized, so care must be taken to position rules in front of this one for any
case where a tone-pair is handled in a different manner. Tone-repetitions, for
instance, should be treated differently from tone-steps. Therefore the above rule
must be preceded by a rule that makes sure that all tone-repetitions are matched
first and only the remaining tone-steps are matched by the more general rule:

"aa" -> "a.a.[a.-a-]a.[a.--a--]"
"ab" -> "aba-abab"

22 In SC3 e.g.: ~pipilanIrII = { |a| a.dup(4).flat.put(3, "-").join }

 R. Schütz/J. Rohrhuber

162

 As we see, VGG variables can take octave and duration diacritics like normal
tone-ciphers. A mixture of tone-ciphers and variables is also possible. Variables
in rewrite-associations allow formulating very general rules with a simple and
transparent syntax. Yet this also introduces a risk of overgeneralization. One of
the challenges for adequate part-generation will be to prevent these by finding
the correct match-order and by constraining the applicability of rules with ade-
quate conditions.
 While letter variables are bound to single events, the asterisk "*" makes it
possible to match several events at once. This wildcard "*" takes rhythmical
diacritics appended to it (e.g. "*--") and sums up the durations of an arbitrary
amount of events until the duration indicated notationally has been reached. This
allows the formulation of match-keys that look for a goal-tone (sèlèh) at a
rhythmically defined position, regardless of the tone-degrees and amount of
tones/events before the goal-tone. As opposed to "abc3" the key "*---3" will
not only match "5653" and "1'653" but also "1_2_3_5_6_5_3".
 It is helpful to understand the logic behind this functionality. Both keys
(match-strings) and values (rewrite-strings) of associations are entered in nota-
tion as Strings. This is a convenience method that allows representing musical
patterns in a relatively familiar form. These strings are converted internally to
arrays of events by the notation-parser of VGG, and it is through this notation-
parser that certain characters gain special functionality. For greater flexibility it
is possible to use event-notation directly in the rewrite system as well. It is even
possible to mix event-notation and string-representation. The parser only con-
verts notation enclosed in quotation marks (i.e. Strings) and passes everything
else to the system unchanged.
 An important feature of a rewrite system is the fact that there need not be any
intrinsic relationship between input and output values – they are just defined as
being associated. Parts like pekingan and bonangan in basic playing modes can
well be understood as being derived from balungan by processing its tones
(doubling, grouping, iterating...), and one could argue that such relations be-
tween in- and output should be reflected in the generative model. In fact earlier
versions of the VGG implementation contained functions to derive pekingan and
bonangan mipil from balungan. Functional representation of parts-derivation
can easily get very complicated or even impossible. As the event-variables allow
for a concise and efficient representation of such derivation-relationships, the

Listening to Theory

163

functional notation was given up for the benefit of a unified syntax of defining
part-generation.

 Disambiguation by melodic context

 During the rewrite process, an input melody – typically but not necessarily
the balungan – is sequentially compared to keys from the rules-array. Each time
a match is made, a rewrite-string is returned and the matched string from the
input melody is discarded, or – as we will see below – moved to the context.
Subsequently the process starts over. Provided every tone-sequence of a melody
finds a match, the concatenation of all return-strings creates a complete new
part. As an implicit requirement of this operation, the rhythmical durations of
key and value must be identical, otherwise input and generated part will not stay
synchronous. The system exploits this implication by scaling all rewrite-strings
proportionally to a duration identical to that of the key. This allows us to notate a
value on any rhythmical level. Provided the rhythmic proportions are correct, the
rewrite-system will deliver the right durations, thus both "21" and "2_1_" will
return the same duration values.
 While the above principles are useful, they do impose a serious restriction on
the rewrite system introduced so far: they imply that a rewrite-string can be de-
termined by internal features of the input pattern to be rewritten only. Yet many
rewrite rules require the consideration of melodic context of the actual rewrite-
string.23 Therefore the rewrite-system offers the option of distinguishing three
segments within a match-key: prefix, replacement window and suffix.

23 All – at least recent – students of garap instruments have been taught by use of expression
like: "to reach goal-tone z use céngkok n if starting after tone x. Use céngkok o if starting after tone
y". Such rules consider what we call the prefix within the match key.

 R. Schütz/J. Rohrhuber

164

Figure 15: The three segments of a match-key. Only the replacement window is
rewritten in the current run. In the subsequent run the content of the replacement
window is added to the prefix.

replacement window... prefix suffix ..." < > " --> " rewrite string "

match-key

 The prefix of a match-key is compared to that part of the input melody that
has been rewritten in the previous runs. The suffix is compared to that part of the
input string that will be rewritten in the next runs. Prefix and suffix allow adding
melodic context as another constraint to the rewrite rules. They are separated
from the replacement window by angle brackets. This allows formulating a more
specific variant of rule 1 in 0:

"3<27.5.6.>33" -> "27.5.5.5.7.--5.7.5.-6.6.7.2"

And as a continuation:

"27.5.6.<33--" -> "[3.--3--][3.--3--][3.--3--][3.--3--][3.---3---]"

 The distinction of replacement-window and context opens up another option
which might seem counter-intuitive at first: it allows breaking up a long rewrite
string into several components by moving parts of it into the suffix first and then
consecutively matching all components while moving the adjacent segments to
the context as needed. This approach is less efficient with respect to the amount
of match-runs required, but it can be advantageous with respect to realtime-be-
havior and variability. The longer a rewrite string gets, the more difficult it be-
comes to make sure that no conflicting change occurs after the match has already
been made. A simple example is a segment change: if a match is made across a
segment border before a switch tag has been set, a conflict will arise when the
switch occurs. Either matches across segment borders must be prevented, or
replacement windows must be kept short enough to guarantee that matches never
hurry ahead so far as to obstruct an interactively initiated change. Breaking up a

Listening to Theory

165

long rewrite-string into components – which often can be reused in different
contexts as well – has the additional advantage making it easier to recombine
components with a high degree of variability (see below).

 Complementing notation by tags

 While the notational extensions made available in the VGG rewrite-system
allow for many ways of addressing features of musical patterns selectively, these
are necessarily bound to the feature-set available in the event-chain, which in
turn mirrors the features made available by the musical notation in use. This
restriction can quickly become limiting. For example, there is no established
way to express irama, pathet, form or metrical position, although we know that
these factors are significant for the disambiguation of keys. We could easily
imagine other, less obvious factors (e.g. tradition/style, personality, mood, per-
formance context), which could also influence pattern-choice, but which cannot
readily be expressed in notation.
 The VGG rewrite system tries to offer a place for all these aspects in a uni-
fied, flexible tagging system. It allows dividing rule-sets into classes distin-
guished by tags or bundles thereof and thus can distinguish contextually deter-
mined outputs of the same key, as well as dramatically reduce the number of
rules to be tested in a single iteration. It is a free tagging system, yet it also al-
lows the nesting of rules, providing an efficient way to express hierarchies. The
tagging system extends the representational potential of musical notation into the
semantic sphere. Anything that can be expressed lexically or by relations among
lexemes can be made a tag and thus become part of the selection criteria in the
rewrite system.
 We have already mentioned the most obvious criteria for the selection among
rules: form and irama. These two are special in that any rule needs to explicitly
define at least one of them, and most rules require both. The current implemen-
tation, next to ‘form’, also adds the category ‘segment’ to distinguish forms of
the same interpunctuating structure but differing performance modes, e.g. la-
drang or ketawang vs. ompak and ngelik. We would assume pathet, and there-
fore laras, are also obligatory attributes, yet this is less straightforward than one
might expect – some rules for some parts can be formulated in a pathet-inde-
pendent manner. It will be interesting to see to which extent the traditional cate-

 R. Schütz/J. Rohrhuber

166

gorization (6 pathet, three in each laras) provide sufficient and unequivocal cri-
teria for rule selection in pattern-matching.
 Some aspects of musical performance cannot have any impact on pattern
matching in the current implementation. The most notable of these are loudness
and micro-rhythmical aspects which become effective after parts have been gen-
erated in the rewrite-system. While the exchange of musical signals, irama and
significant base-speed changes can become part of pattern-matching, volume
and micro-rhythmical speed variations cannot take effect in the present design of
the rewrite rules. This might be considered a shortcoming if one assumes that
any distinct feature of musical performance has the potential to become signifi-
cant in part generation. However we know of no case within the current scope of
VGG where loudness or micro-rhythmical variations are not directly connected
to other phenomena already explicit on the symbolic level. Therefore they do not
introduce any new information significant in determining part generation.
Should this change, similar classes like that of Pirama would have to be intro-
duced together with appropriate matching rules.

 Variability, disambiguation and randomness

 Another important aspect of part generation is variability. Variability is an
interesting musicological problem because the degree of variability we observe
largely depends on our own sophistication as observers. Specifically, it depends
on our ability to disambiguate patterns of comparable distribution. Within the
scope of VGG, the problem of how to handle variants ultimately boils down to
deciding what degree of disambiguation to integrate into the system. Both on the
level of notation and tags we have to choose the degree of detail appropriate to
our requirements and knowledge. If we increase notational precision without
additional distributional criteria, the amount of variants will rise.
 Logically “disambiguated variants” are not variants any more, and if disam-
biguating factors are supplied they are not treated as variants by the system. It is
well known that the perceptive filters that identify musical equivalence are
learned to a substantial degree. This doesn’t mean that the – by whichever means
– observable differences between two entities conceived as identical are not per-
ceivable at all, but perception might be less sensitive to the difference – and if
the difference is perceived, it is not considered distinctive. Such non-distin-
guishing differences could be either ignored or presented as essentially random.

Listening to Theory

167

An ideal treatment of variability would require a consistent degree of descriptive
precision with respect to data representation (which requires a theoretical base
from which to define this consistency) and a reasonable account of how musical
distinctions are drawn within the respective music-culture. Variants would then
be cases where entities distinguished by data-representation have identical dis-
tribution.
 In the study of central Javanese gamelan music, and perhaps the cultural sci-
ences in general, it would be naïve to expect studies to achieve both the consis-
tent descriptive precision of a symbolic system, and a recognition of distinctive-
ness as defined by the culture, and – to add another dimension – the individuals
making up that culture. We don’t know of any approach to objectify or quantify
musical difference, and culturally defined distinctiveness in music must be seen
as highly multifaceted and dynamic. Research should be seen as an attempt at
moving in this direction. Our hope for the VGG implementation is that it will
become a tool to support this process.
 A framework for modeling difference on both levels should be detailed down
to the physical level. Advanced audio-synthesis programs are probably some of
the best available tools for this purpose. The question will be how to make use of
the potential both epistemologically and syntactically within a system ultimately
aimed at the description of culture. The notation used cannot claim conclusive-
ness in that respect, its benefits derive from the fact that it is developed within –
and links to – a rich tradition of discourse about the culture under study. The
freely extendable event system was chosen in order to avoid unnecessary con-
straints on potential differentiations and allow literal language to complement
notation. It comes at the price of potentially complex data structures, which can
become difficult to maintain and potentially long evaluation cascades, difficult
to process in realtime.
 In most scenarios, our treatment of variability will be more modest. We will
come across variants with identical distribution relative to the degree of differ-
entiation required for our central purpose. There may be distinctive factors, but
we feel legitimized (or forced) to ignore them. For these cases the rewrite system
offers an efficient notation to store the variants side by side, and to have the
system choose randomly among them on each instantiation of an association.
Such variants can be written as Sets:

 R. Schütz/J. Rohrhuber

168

Figure 16: Example of an association using a set in the rewrite string to allow for
random choice among equivalent variants.

"33--" -> Set["3.3.[3.-3-]3.[3.--3--]3.3.[3.-3-]3.[3.--3--]",
 "3.3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]",
 "3.3.[3.--3--][3.--3--][3.--3--][3.--3--][3.-3-]",
 "[3.--3--][3.--3--][3.--3--][3.--3--][3.---3---]"
]

 Sets can also be used on the key-side of associations, where a match is valid
for any of its members. This can be an efficient way to broaden the scope of a
rule and is another way to formulate many to many relations efficiently:

Figure 17: Example of an association using a set in the match-key to efficiently add
several keys to one rewrite rule.

Set["33--", "3<-33-", "3<--3-"]
 -> Set["3.3.[3.-3-]3.[3.--3--]3.3.[3.-3-]3.[3.--3--]",
 "3.3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]3.[3.-3-]",
 "3.3.[3.--3--][3.--3--][3.--3--][3.--3--][3.-3-]",
 "[3.--3--][3.--3--][3.--3--][3.--3--][3.---3---]"
]

 Pattern-components, variables and data-maintenance

 By now it is probably clear that data maintenance within the rewrite system
can be challenging: adding variants alongside definitions of their distribution
and refining descriptive granularity of notation24 can quickly create large data-
bodies with a complex structure. At the same time many rewrite strings consist
of concatenations of subsegments or components which can be highly repetitive
and/or occur in many different contexts.

24 Most of the transcriptions of patterns in publications are deliberate simplifications representing
sets of real-world patterns with slight melodic variations. The knowing reader can usually derive
real world patterns from such a representation without difficulty. As long as variability and the
specific shape of such variants is not within the focus of the author, this shouldn’t be a problem.
As the notation used to generate parts in the VGG implementation ultimately forms the base from
which sound is generated, the notational granularity will have to be finer than in common practice.

Listening to Theory

169

 Variables can be very useful in controlling some of the complexity and nota-
tional redundancy. We can store musical notation or functions25 under a
meaningful variable-name and call them by that name anywhere at any time. If
at some point we find that our data-representation requires some refinement or
correction, we just do that once in the variable assignment. As a consequence the
change will automatically propagate to all places where the variable is called.
Using variable names rather than notation for the representation of musical pat-
terns is far less error-prone and significantly eases data maintenance. Addition-
ally, and maybe most interestingly from an epistemological point of view, it
allows us to employ existing, or introduce new suggestive terms to address mu-
sical patterns. This means we can use semantically motivated terminology, and
query the content of each term by calling the current value of the variable at any
time.
 Figure 16 presents a transparent example to demonstrate some ways to re-
duce notational redundancy. Reformulating that association in the way outlined
above could take the following steps (in slightly simplified SC3 syntax).

• create a dictionary
 g = ();

• make a branch for atomic components, headed by a meaningful name. The
term gantungan (lit. ‘hanging’) is used to refer to repetitive patterns re-
maining on the same tone

 g.gant = ();

25 The dynamically typed object-oriented design of SuperCollider allows to meaningfully store
anything (any “object”) in a variable. If we store a function rather than the result of a function-
evaluation, we can trigger the evaluation of that function each time the variable is called. If the
function constitutes a variable generation-principle (if it contains some kind of randomness), it can
create different results at each evaluation. If we store a Set, we can ask for a randomly selected
member of the set each time we call the variable:
Assign a set to a variable: ~mipilIr1Sl6 = Set["27.5.- 6.6.7.6.", "27.5.-
6.7.-6.", "27.5.- 6.7.--"];
Retrieve any of the three set-members: ~mipilIr1Sl6.choose;

 R. Schütz/J. Rohrhuber

170

• add the components for later concatenation
g.gant.compA = "3.3.[3.-3-]";
g.gant.compB = "3.3.[3.--3--]";
g.gant.compC = "3.[3.--3--]";
g.gant.compD = "3.[3.-3-]";
g.gant.compE = "[3.-3-]";
g.gant.compF = "[3.--3--]";
g.gant.compG = "[3.---3---]";

• concatenate components in the various known ways to fill a rewrite
string of required duration. Express repetition by the method dup(n) ‘du-
plicate(number of duplications)‘.
g.gant.versA = g.gant.compA ++ g.gant.compC.dup(2).join
g.gant.versB = g.gant.compA ++ g.gant.compD.dup(4).join
g.gant.versC = g.gant.compB ++ g.gant.compF.dup(3)
 ++ g.gant.compE.join
g.gant.versD = g.gant.compF.dup(4) ++ g.gant.compG.join

• create a Set of variants:
g.gant.variants = Set[g.gant.versA,
 g.gant.versB,
 g.gant.versC,
 g.gant.versD

];

• use the Set in an Association. For each match one of the variants is
randomly chosen:
"33--" -> g.gant.variants;

 This might not look very attractive at first sight. Yet with rising complexity
of data structures and an increase of the frequency with which atomic compo-
nents can be reused in different contexts, it can increase clarity. It could also be
used as formal base for the development of terminological paradigms to address
pattern-segments.

 Pattern matching and interaction

 Parts generation by means of VGG’s rewrite system is so far based only on
balungan. This approach draws on a long tradition of theoretical attempts to
assess or model the internal build of the rich texture present in gamelan music.
Centering a description of this texture around balungan is a strategy employed
from the earliest to the most recent descriptions of this music. This despite the

Listening to Theory

171

fact that the approach has come under heavy attack in the post-Kunst era, in
which both scholarly and practical study of gamelan music became very popular,
especially in the United States, and with important contributions of Javanese
both in the US and in Java.26 The clearest reflection of the role of balungan in
the conceptualization of this music is the Javanese notation system, which repre-
sents a gendhing by writing down its balungan only, accompanied by some ad-
ditional information like pathet (‘tonal mode’), form and name. In view of the
strong opposition against a “balungan-centric” perspective in parts of the more
recent discourse about gamelan music, it might appear surprising that this
balungan-centric discourse is quite common in Java as well, both in writing and
teaching. In Java, this approach appears to be less of an issue, probably because
of a more pragmatic perspective, in which the model is used as a tool, e.g. to
teach students principles of parts generation in practical classes. Use of balun-
gan does not necessarily imply its function as a starting point of a musical deri-
vation or variation process, or that it constitutes the mental representation of a
composition in the musical mind. Balungan could simply be seen as a compact
symbolic representation of a richer musical experience taught by means of prac-
tical examples and verbal explanation. If seen as a symbolic system rather than a
musical agent, one might approach the question whether the entire texture of a
performing gamelan group could be derived solely from balungan in a less
charged manner. While the criticism of a balungan-centric perspective has
greatly enriched our discourse on gamelan music, the question of how much of
the musical texture could be explained by evaluating balungan only is still le-
gitimate, and the choice of balungan as the most prevalent basis for part genera-
tion appears to be justifiable. Attempting to advance the descriptive power of a
balungan-based rewrite system, and pushing it to its limitations should be a
highly revealing way of obtaining insights into both Javanese gamelan music
and the power of a rewrite system as a descriptive tool.
 This said, VGG’s rewrite system is by no means limited to balungan as input
pattern. In fact, any part can serve as input and be evaluated meaningfully, pro-
vided a descriptive set of rewrite-rules is given. Part-derivation from parts other
than balungan is very compelling, because it could constitute a highly revealing
model of musical interaction. If somewhat unspecific, it is nevertheless a gener-

26 Sumarsam (1975), who introduced the term inner melody, inspired a lasting discussion
problematizing the central role of balungan. For an overview and discussion see Perlman (2004).

 R. Schütz/J. Rohrhuber

172

ally accepted view that sindhénan (female solo singing) is heavily guided by
rebaban, that gendèr players sometimes choose patterns inspired by sindhénan,
that ciblon, bonang imbal and gendèr with laku wolu (lit. 'step eight', ≈ 'double
density') céngkok have tight interconnections and are likely to inspire one an-
other in a spirited performance.
 It is also generally acknowledged that bonangan plays an important role as
guide of the balungan when the playing style mipil is used. This melodically
highly redundant playing style allows balungan-players to derive much of their
part in realtime just by listening to the anticipating patterns of the bonang. The
bonang also plays an important role in fine tuning and reinforcing agogic fluc-
tuations in some forms and playing modes. So turning around the current rewrite
logic and deriving balungan from bonangan appears a very appealing model to
construct, which – as opposed to the examples given above – would not be par-
ticularly difficult to implement. In fact, this would be a very interesting experi-
ment to make, because it has not yet been made sufficiently explicit to what
extent balungan is derivable from bonangan mipil. Most of the time, derivation
is very simple, following a logic analogous to Set[aba-abab, aba--ba-]-
>ab. Yet occasionally the bonang uses patterns where derivation is ambiguous:
"a.a.[a.-a-]a.[a.--a--]".dup(2) could be played alongside "aa—" or
"--a-". In other cases it may even appear impossible to derive balungan, be-
cause bonangan uses tones not present in balungan: 21.5.5.5.1--5.15.-
6.6.1.6. -> 2126. In practice though, musicians can usually derive their
balungan safely in the latter cases too. Of course it is hard to say whether – at
any particular moment – musicians derive their part, or whether they simply play
from memory. Yet anecdotal evidence indicates that there is an intuitive capa-
bility to derive balungan in realtime even in the latter cases. This is in fact gen-
eralizable, because balungan – like other parts – has idiomatic céngkok and
could be described as an informationally redundant, prototypically functional
bridge between goal-tones. If we look at the above bonang-pattern 215.5.5.1…
it is important to know after only the third tone (5.), it is safe to say that the en-
tire pattern will end on 6. Therefore the derivation of the appropriate balungan
boils down to the question of how to reach 6. in a way idiomatic for balungan,
and whether – in a specific context – there is only one answer to this question.
Given such a procedure, it would be possible to formulate a rewrite-rule, speci-
fying the appropriate context in prefix and/or suffix that allows deriving 2126.

Listening to Theory

173

from the discussed bonangan pattern. Formulating this rule as a sort of hypothe-
sis, and then applying it to a large pool of real musical contexts should provide a
fair test of whether the result describes musical practice adequately.
 Of course the real situation is more complicated than this brief discussion
indicates. Real world bonangan is more flexible than the examples show, and
there are quite a few cases of unusual balungan. Yet the redundancy both in
bonangan and balungan is worth considering, and a careful study of the relation
between bonangan mipil and balungan should reveal that quite a lot of balungan
can be derived from bonangan mipil even in cases where the simple aba-abab
-> ab logic does not apply. The implication is that the apparent redundancy in
Javanese gamelan music makes it possible to actually learn repertoire while par-
ticipating in a performance.
 The main purpose of this digression was to demonstrate that implementing
the derivation of balungan from bonangan mipil by means of a rewrite-system,
which in turn is part of an audio-synthesis system, yields a very promising tool
with which to test a scholarly hypothesis. The act of implementation presents a
series of specific, detailed puzzles. The solution (not the workaround) to each of
these puzzles could be seen as a formal encapsulation of a little music-theoreti-
cal statement. Because the result can be played back, we are able to then ask
competent musicians for an evaluation based on listening only.
 While appreciating the potential benefit of such a system, we should also
have a look at the difficulties it presents. Solutions that take the more conven-
tional approach of deriving parts from balungan – rather than the opposite –
initially appear as the only viable option. Balungan is a comparatively compact
part,27 where many hours of music can be notated with a small amount of data.
It is readily available in many editions, including digital formats, and could be
transcribed quite easily from recordings when necessary. While there are ba-
lungan variants for quite a few pieces, it is undisputed that the version agreed
upon in a performance is well defined and reproducible. Simultaneous use of
different balungan versions in a performance is never intended.

27 While balungan is very compact it could still be seen as quite redundant. It would be an
interesting experiment to try to identify the minimum amount of information required to generate
everything that can be generated from balungan. While this “part” doesn’t exist, it should be pos-
sible to derive balungan from it.

 R. Schütz/J. Rohrhuber

174

 This cannot be said about other parts. While there are a few transcriptions of
garap parts, most of them from ISI Surakarta, their coverage – except for the
rebaban books by Djumadi28 – is not comprehensive. Most studies don’t simply
write down a part, but instead present the playing style as a general collection of
céngkok. The task of applying the material to specific musical contexts is a task
left to the reader. A description of the principles of their application is usually
not part of the publication. A collection of céngkok with undisclosed application
principles could thus only be used as a source from which to build the rewrite-
system if the rules are added. This brings us back to the conventional approach
of deriving parts from balungan by combining rules and céngkok.
 There is a tradition of presenting a part as a collection of céngkok, and there
are good reasons to do so, even if it carries some strong limitations. Some
céngkok appear very frequently, making writing them out explicitly on each
occurrence very cumbersome. The verbosity involved in working this way might
be a requirement for certain categories of study. For example, a project that fo-
cused on variability or on minor adjustments made to céngkok at joints might
depend on detailed descriptive transcriptions. Conversely, the studies we have
mentioned generally tend to have a more prescriptive stance29 and attempt to
present a part as concisely as possible. This is not only a scholarly challenge; it
is also preferable in a discursive context where readers often already have ma-
ture conceptions of how céngkok are applied. In this context, writing out entire
parts by reproducing the céngkok notation each time would only obscure the text
and discourage the reader. A viable alternative is to present musical composi-
tions as chains of céngkok represented either by names or other short symbolic
representations. This approach is quite common in informal gatherings and
classes, yet to our knowledge has never been published in comprehensive studies
covering larger portions of repertoire. There probably are several reasons for
this: the approach could be seen as too flat, or as exposing aspects of this music
that should better be studied in actual practice or in face to face communication
between teacher and student. Last but not least, experts can reach such a high
degree of fluency in interpreting balungan that the balungan itself suggests ga-

28 Djumadi (1976-83, 1982)
29 A notable exception is the siter study by Sigit Astono (1990), in which the siteran of three well
reputed siter players of contrasting musical background is transcribed for five popular gendhing

Listening to Theory

175

rap as succinctly as the chains of céngkok names proposed above. This expertise
is rarely made explicit. More often it is taught through a process where over-
generalized statements30 about the applicability of céngkok to balungan – or the
principles of concurrence of balungan and céngkok in other parts – are gradually
revised and complemented by more specific ones. In this process, the scope of
rules gradually gets blurred – it is usually left open whether a more specific rule
is bound to the individual occurrence where it was introduced, or whether it
should be applied to all instances of comparable31 balungan. This is a shortcom-
ing for the theoretically minded, but the question is often of little relevance in
the classroom, which comprises only a small part of a student's exposure to ga-
rap. Their pedagogical function in this context could be viewed primarily as a
means of encouraging careful attention to interesting features of gendhing, rather
than providing conclusive explanations of garap. The more advanced garap
questions become, the less adequately they can be answered in terms of wrong
or right, and the more they shift into the realm of individual preference. Like-
wise, musicians differ considerably in the degree of standardization they con-
sider appropriate – some have strong views how things should be played, while
others are considerably more permissive or appreciative of variety.
 Material derived from parts other than balungan is difficult to retrieve, far
more variable than balungan and often highly redundant. This makes them sub-
stantially more difficult to use as a starting point of part generation. Choosing
the conventional balungan-centric approach has the added benefit of integrating
well with scholarly discourse from ISI Surakarta. Balungan centricity might be
questionable as a model of the mental representation of gamelan music, but it is

30 This is a deliberate simplification. In the beginning, students are taught without any reference
to scope, and the genericness of céngkok is something that only gradually reveals itself in the
learning process. Yet on an advanced level, the process resembles the way described above: stu-
dents can easily create a tentative part by applying a few general rules and are taught more specific
or sophisticated realizations on that base.
31 Comparing instances of balungan makes no sense without considering contextual factors,
among the most prominent pathet and melodic context (preceding and succeeding balungan).
Additional factors include also the position within gong-phrase or metrical weight and form. The
impact of the latter two factors is less well rationalized, likewise the term kalimat lagu (lit. ‘tune
sentence’) which is occasionally used in Javanese discourse on such matters. As factors contribut-
ing to the identity of a certain balungan phrase can be quite manifold, it can be difficult to ascer-
tain whether two balungan instances with identical tone-successions are identical with respect to
garap.

 R. Schütz/J. Rohrhuber

176

an attractive foundation for studies of garap, and well represented in Javanese
discourse on the matter. Following this course will reveal as much about ba-
lungan itself as it will about garap parts.
 Using parts other than balungan as input for the rewrite system is also rele-
vant on the level introduced at the beginning of this chapter – some musicians
having an impact on the performance of others in realtime. Musical agency in-
spires variation and controls the course of a performance. Melodic interaction –
a pesindhèn following a rebab, a bonang associating with a ciblon or vice versa
– is fundamental to advanced performance. Modeling this interaction with the
current VGG framework is not trivial: realtime constraints are even more rigid in
parts which have basically been derived in the very moment. The time span al-
lowed for recognition-based reaction must be very short. As balungan is preex-
istent, we can make the key-size as large as required.32 However, if pattern
recognition is used to model interaction, information can only be evaluated once
it has become audible. This means there is a clearly defined and sometimes very
short time span between the recognition e.g. of a melodic signal and a potential
reaction.
 In order to derive results from pattern-matching beyond basic rewrite-strings,
we use the class Preact. It also uses Tafsiran as pattern-matching compo-
nent, which means that it can recognize patterns based on the same symbolic
representation of match-keys, and it can evaluate tags. Yet while the rewrite
system returns strings, Preact specifies functions. Therefore Preact can act as
an external agent to the system, doing things like setting or removing a tag (to be
evaluated in the rewrite-system), or triggering actions like switching to another
segment or speeding up and down. A sophisticated model of interactivity should
also allow for shifting attention, modeled as a switch between different input
melodies, or even divided attention, monitoring several input-melodies in rapid
alternation and choosing the most relevant one in each instant. More differenti-
ated interactivity in part generation thus remains a challenge to be explored in
future experiments with the system.

32 There is a pitfall though: if a key matches cross segment-borders and a segment-switch is
initiated after a match was made problems will occur.

Listening to Theory

177

 Micro timing: interaction and jitter

Interaction is also an important factor contributing to finer aspects of musicians’
timing. While it is generally acknowledged that the drummer is in control of
speed and speed changes, our model should not depend on absolute control. In a
performance musicians don’t know in advance when a transition or tempo-ad-
justment is going to occur, nor is the profile (duration, gradient, and curve) of
speed changes precisely predetermined. Even though in many performances,
conventions are followed about when and how a transition should occur, all
players will wait for the drummer to take the first step. While a drummer may
give signals to indicate the ending of a piece or to anticipate the switch to a dif-
ferent drumming mode, speed changes are initialized just by carrying them out,
and are not signaled in advance. Control that permeates as change in sound re-
quires a bit of time to become effective and not every player will necessarily
react in exactly the same way. The musicians’ reaction to an initialization of
speed changes also has some influence over how a particular transition will ul-
timately be executed. The feedback of rhythmically salient instruments like pe-
king (highest metallophone with a very constant stroke-density) and bonang
probably plays a more important role than that of others.33 At the start of a piece
it is usually not the drummer who sets the initial speed, but the player of the
melodic introduction buka. The drummer may adjust that speed if desired, but
the change should be smooth and everybody should be able to follow.
 The VGG implementation attempts to capture timing as a result of mutual
adjustment by allowing each stream of independent events (which usually repre-
sents the sequence of actions of one player) to have its own temporal frame of
reference. Timing negotiations between players can be very intricate, because
the judgment of the others’ tempo (and one’s own) depends on many different
factors which are not easy to formalize. To experiment with a system where

33 One of the most distinguished musicians of Solo, Bp. Suyadi, the former leader of the RRI
ensemble (Radio Republik Indonesia Surakarta), claimed in a lesson that (even) the rebab could
guide the long initial transition at the beginning of a gendhing and advised to play rebab there in a
rhythmically plain, less ornamented and delayed manner. Rebaban is one of the most prominent
parts in a gamelan, but one wouldn’t count it among the rhythmically salient instruments because
it is often not heard well by all players. While the musician's statement would probably be dis-
puted by others, it shows that sound characteristics (rhythmic salience) and social factors (role as
leader) contribute jointly to the dynamics of playing together.

 R. Schütz/J. Rohrhuber

178

timing is negotiated between the players, the class ListeningClock abstracts
from individual tempo judgment and instead makes it easier to reason about a
network of interacting frames of time reference. The intention is to allow ex-
perimentation with tempo adjustment without assuming a single master clock,
and with the option to distinguish between different listening and response be-
haviors. In such a network, every player may take into account any number of
other players to any degree. The degree to which they listen is defined as a list of
weights between 0 and 1, where 0 means not listening to the respective player
and 1 means only listening to this player34 (see Figure 18). Thus, a listening
clock can temporarily loosen the synchrony between the clocks of a couple of
instruments during speed changes. When a transition returns to a stable speed the
clocks will be resynchronized as well. The instruments participating in such
mediated timing relations can be chosen freely, and relations can be chained. For
each relation the parameters can be set independently. Rather than a mature
model of interactive timing in central Javanese gamelan music, this implementa-
tion should be seen as a framework for experiments and development; an initial
attempt to address the issue (see fig. 18).
 In the current implementation, we simplify the situation by assuming that
every musician knows every other musician’s tempo and phase (the relative
timing offset) at any moment. Every player may ‘listen’ to every other player
and adjust his own playing according to: (1) a weighted average of the others’
behaviors, (2) a playing attitude, denoted by the two parameters empathy and
confidence. The algorithm takes into account two possibly contradicting exi-
gencies: (1) the tension between one’s own consistent speed and the other play-
ers’ speeds, (2) the tension between achieving contiguous playing and remaining
in time with the rest of the ensemble. The first is related to tempo, the second to
timing offset, to phase. In figure 18, we give a more detailed account of the sim-
ple algorithm that runs at a given rate in each clock.

34 These values may be changed at any time during the performance. Future extensions of this
clock network could take the current context into account and vary these values accordingly.

Listening to Theory

179

Figure 18: A small network of clocks listening to each other. The arrows depict
weights of mutual influence. An external change to one of the clocks results in the
proliferation of this change in the ensemble.

b

a

cd

0.9
0.3

0.1

0.2

0.5

0.4

1.0
0.6

 First, each clock calculates ∆θavg, the (weighted) average of the phase differ-
ences between its own phase θref and the phases of the clocks it is listening to. It
also calculates the average tempo φavg of those other clocks. In a next step, the
clock derives its new tempo from these values. The clock’s parameters confi-
dence and empathy determine how the ensemble’s average phase difference
and tempo influences the clock’s new tempo:

Equation 1 φnew = φavg· (1 − confidence) + φold · confidence +∆θavg · empathy
where φavg is the average tempo of the rest of the ensemble, and ∆θavg the aver-
age phase difference. φold and φnew are the previous and the new tempo of the
currently adjusting clock.
 The parameter confidence is intended to denote the confidence in the rele-
vance of one’s own tempo, so that high confidence entails a tendency to insist on
one’s own tempo. The parameter empathy models the willingness to adjust
one’s phase, “to be with the others”. It is easy to understand the influence of
these parameters (which both range between 0.0 and 1.0), if we consider extreme
cases. For instance, a fully confident player without empathy would simply re-
main unaffected by, and thus out of sync with, all the other players. Such ex-
treme cases provide a good starting point, since the tempo calculation formula

 R. Schütz/J. Rohrhuber

180

above becomes greatly simplified. Let’s first consider this case of the player
where empathy = 0.0. As a confident player without empathy, one may be
thought to remain in one’s own tempo despite changes in the ensemble
(c = 1.0, e = 0.0):

Equation 2 φnew = φold · 1.0

 Conversely, when both one’s empathy and one’s confidence are minimal, one
would not remain with one’s old tempo, but immediately jump to the average
tempo of the rest of the ensemble (c = 0.0, e = 0.0):

Equation 3 φnew = φavg· (1 − 0.0)

 Such a player will always follow tempo changes, but will be indifferent to
whether they play in sync with the others; there is no adjustment for phase dif-
ferences, but only to tempo differences.
 Now, the second parameter, empathy, is the degree to which a player reacts
to phase differences. In other words, while confidence is tempo-oriented, empa-
thy is synchronicity-oriented, so that high empathy will cause us to follow other
players very closely, low empathy will cause us to ignore phase differences,
even if we follow their speed meticulously.
 For instance, imagine a player guided mainly by an awareness for where in
the piece the others are now, and less by his own tempo. In this case, the conti-
guity of his own playing will be reduced, and adjustments to the ensemble quick.
This situation is extreme when confidence is minimal (= 0.0) and empathy
maximal (= 1.0). In the above formula, the influence of the player's own tempo
can be left out, so that only the average ensemble tempo and the average phase
difference have an effect (if the ensemble is faster, but behind – so that ∆θavg is
negative, the new tempo is not necessarily higher than the old one)
(c = 0.0, e = 1.0):

Equation 4 φnew = φavg· 1.0 + ∆θavg

 If, however, we decide to play both maximally confidently and emphatically,
our own tempo will not adjust very much. This is not because we note the en-
semble's tempo changes, but because we try to play on the others’ beats. This

Listening to Theory

181

situation shows a maximum tension, and when all players of the ensemble listen
to each other in this way, the ensemble may diverge, oscillate, or become cha-
otic. The simplified formula then looks like this (c = 1.0, e = 1.0):

Equation 5 φnew = φold + ∆θavg

 We can easily imagine that transitions can work with reasonable grace when
the players have a well adjusted balance between confidence (considering each
others’ tempos, and their own), and empathy (neither jumping on the others’
beats, nor ignoring their current phases). The way an ensemble slowly adjusts to
tempo changes depends on the details of all these behaviors and to what degree
each player listens to other players.
 On the level of micro-timing, VGG provides a separate simple algorithm that
may be applied to every stream: the class Ptiming allows control of systematic
delay and micro-rhythmic variation (parameters that normally do not compro-
mise part synchrony) by means of several parameters. This pattern is a starting
point where further research may be done in order to refine the relation between
musical context and micro-timing. In the current implementation, Ptiming
takes into account four parameters of micro-variation: offset, jitter, drift and
driftratio. Generating numerical values, it can be applied to any event stream’s
\lag or \offset field, which serves as a phase offset, independent of both the
events’ inter-onset time, and the clocks’ tempo variations. All variations are
generated on the basis of SC’s pseudo-random number generator, which is fast
and reliable, with a very long period length.
 The parameter offset (in Ptiming) is a constant timing offset added to each
value to account for a player consistently playing slightly before (negative value)
or after the beat (positive value). This may be specified as dependent on specific
roles for certain instruments, or on a player’s personal style, in order to model
the specific roles of certain instruments in a given piece, or simply to adjust for
slower attack characteristics of some instruments (if not corrected by the player).
 The second parameter, jitter, allows us to specify the micro-variations in
timing that are independent of past events and speed: it accounts for a constant,
physical or deliberate inaccuracy of playing.
 Finally, drift and driftratio define a level of timing that may be described as
standing somewhere between the previous two: while offset is a constant differ-
ence, and jitter a new random aberration from the beat given by the system, drift

 R. Schütz/J. Rohrhuber

182

is an incremental change of offset. Each new value differs a little from its previ-
ous value. In other words, being a random walk, consecutive values depend on
each other. Similar to the tempo movements of ListeningClock, its effect can
be taken as a constantly corrective and adaptive movement (yet much more sim-
plified and on a micro level). Here, the parameter drift determines the maximum
total drift from the offset points, and the driftratio the speed at which this drift
changes. In difference to the continuous co-adjustment of the clocks, this algo-
rithm accounts for an errant, independent aspect of alteration that is not captured
by the former. Together, these four parameters frame a simple dynamics of mi-
cro-temporal variation that supplements the dynamics of tempo changes and
rhythmical variation, for each stream independently. Further research efforts into
this aspect of timing can be easily formalized and integrated into the system (and
thus into the entirety of the experimental setup).

 Audio-synthesis

 Actual sound is finally created by sending the information derived from vari-
ous resulting event-streams to either a sample player or an audio synthesis unit.
This is preceded by applying a few necessary basic physical parameters like
volume/balance and spatialization, which can partially be controlled from a sim-
ple graphical mixer.
 The sample player currently uses a basic set of samples made from the ga-
melan of the Arts University Graz as part of the VGG project. Using samples has
various advantages: we use tuning and sound recordings of a given ensemble
and achieve a relatively realistic sound without putting a high burden onto the
system. This is sufficient for many applications of the system: testing parts gen-
eration, experimenting with speed, irama, transitions and the like. Yet a sample-
player does not allow detailed control over the physical parameters of each
sound event. Without loss of precision, recorded sounds can only be manipulated
as atomic units. To give a simple example, direct frequency modifications would
be applied to all sound components alike and therefore change durations propor-
tionally.
 Once the sound itself moves into the center of attention, we will want to ac-
cess its individual components independently and thus use the audio-synthesis
module. Currently, the available measured data contain information about fre-
quency, amplitude, phase and temporal behavior (attack and ring time) of the

Listening to Theory

183

partials in all samples in the KUG gamelan.35 We have structured this informa-
tion in a nested and relative manner: the timbre of each key or gong of an in-
strument is represented as a collection of these properties. These collections in
turn are combined into one collection of tones (keys or gongs) per instrument.
Frequencies are stored not as independent values but as ratios. Starting from the
lowest pitch and nested according to the structure described above, all frequen-
cies are stored in a relative manner. As a consequence, we can determine the
scope of experimental detuning by choosing the appropriate nesting-level. The
frequency of a partial (fpartial), for instance, can be derived directly from the
product of the ensemble’s root frequency (f0), the ratio of instrument frequency
to this root, (cinstr) the key’s ratio to the instrument (ckey), and the ratio of the
partial, relative to the key (cpartial):

Equation 6 fpartial = f0 cinstr ckey cpartial

 This is only the internal representation – the parameters can either be edited
directly, or by means of their respective values in absolute frequency, relative or
absolute cents. Since they are constantly updated,36 they may be changed in
real-time without interrupting playback, so that many experiments with various
systematic modifications are possible: For example one may detune or dampen
the whole ensemble, apply a different scale to an instrument, and choose
whether to change the overtone pattern or not. Or one may dampen or detune all
partials in a given range of frequency for a group of instruments. What gives this
feature a new quality is the fact that such experiments can be made within a
playing gamelan. Changes thus are not just applied to an abstract collection of
sound (like a scale), but to a changing musical context in which tonal dynamics
re active.

a

35 The values have been extracted from the recordings used in the sample player with MatLab
scripts programmed by Franz Zotter as part of the VGG project. For simplicity of explanation we
reduce the partial-properties to three here: frequency, amplitude and ring time.
36 All parameters are read with a rate of 750 Hz, and are linearly interpolated to avoid
discontinuities. They can thus be either manually adjusted during playback, or programmatically
modulated. In some cases, for instance, one may want to detune an instrument slowly over a long
period of time, or one may want to introduce a vibrato on a number of partials.

 R. Schütz/J. Rohrhuber

184

Recapitulation: a walkthrough

 We have touched upon very different aspects and components of the frame-
work. The system as a whole combines these components (and their respective
assumptions) in a fairly uniform manner, relying mainly on the pattern classes,
which are extended by some additional classes like the synthesis module and the
rule object. On the whole, we may see VGG as a prototype for a connection
between different assumptions about necessary competences and interactions.
This prototype can be restructured and extended easily, and its parts may be
refined without affecting the rest of the implementation. In the following section,
we will give an overview of how its parts are connected.
 Starting from balungan-notation and the notation-parser, a basic event-stream
is created, which is subsequently enriched with required information. Some of
this information has to be set manually (e.g. pathet and initial speed), some is
retrieved from dictionaries containing generic information. Streams are proc-
essed in realtime by other streams that derive from classes generically called
Pattern in SuperCollider. One pattern may create multiple streams, each of
which can operate at the same time, either chained or in parallel. If they operate
within a chain of streams, one stream receives the output of the other without
having to wait for the preceding stream to finish processing the entire stream. If
a pattern only processes a single tone on each iteration, the next pattern can op-
erate as soon as this tone is modified.
 The first patterns to operate on the balungan-stream just add meta-informa-
tion required later for parts-derivation: metrical information by Pgongan, the
current subdivision-level by Pirama, required tags, pathet, form and others.
Feeding this information into the stream means that each event contains the re-
spective information independently. Processes depending on this information
don’t have to look it up somewhere else and a change is immediately present as
part of the event definition. Operations applied subsequently may modify the
balungan in its notated form in order to ease part generation. The output of such
operations may either replace the current balungan-stream, be added to the
stream, or be established as a parallel stream used for the generation of different
parts.
 Subsequently parallel streams are created for each part by invoking the pat-
tern Ptafsiran for each instrument independently. This pattern generates each
part by evaluating instrument-specific rules stored statically in the dictionary of

Listening to Theory

185

the respective instrument. While some instruments wouldn’t really require the
invocation of the rewrite engine to be generated, the current implementation has
chosen this path to allow for a unified logic of formulating rules for all parts.
 Splitting up streams not only creates different parts playing together, but also
provides a way to localize agents that operate on self-contained information sets.
These agents can exchange information with other agents, but they do not see
everything present in the system. By controlling consciously at which place in
the tree of streams information is fed into the system, we can control the infor-
mation available to an agent. If we feed information into the stream before indi-
vidual parts have branched off, all parts will share this information, if we feed
information into one of the branches, only parts derived from this branch will
contain it. Therefore in principle it is possible to model chains of information
exchange or communication going on between individual agents or a subgroup
of the ensemble only.
 Once generation for all parts is active, the streams responsible for identifying
musical signals (derived from Preact) receive each stream. Identifying a musi-
cal signal means recognizing musical patterns in the event stream. The signal-
identification uses the same algorithm as the rewrite engine. Any time a signal is
recognized (a key matches), a function is evaluated which can change the default
flow of the program. As opposed to the rewrite-system, where a match will al-
ways cause a rewrite-string to be issued, the function triggered in Preact could
cause any programmatic activity. Common examples are setting a tag or con-
trolling speed-changes. Therefore this pattern defines one type of the informa-
tion sending agents in the system.
 On the next layer two fine-adjustments to timing are made. The Listening-
Clocks try to account for some of the interplay between musicians when speed-
changes occur. We allow for the possibility that there is some reaction delay and
that different parts have a different degree of rigidness adjusting to other parts.
Setting the parameters for empathy and confidence, and setting up cascades
of clocks, should reflect known roles and rhythmical salience of parts.37 The
resulting stream is processed by a pattern (Ptiming) that allows to control lag in

37 The aforementioned pattern Pirama creates streams that derive tempo information from each
respective clock.

 R. Schütz/J. Rohrhuber

186

a generalized manner and that adds some temporal randomness to the events
reducing the over-precision of machine timing.
 Before the resulting streams are sent to the synthesis-unit, a few basic physi-
cal parameters like volume and spatialization are set. As synthesis unit, either a
simple sample player or an algorithmic sound-synthesis-unit can be chosen. The
sample player uses a set of samples made from the gamelan of the KUG, the
sound model used for synthesis works based on data retrieved from an analysis
of the mentioned samples. When using the synthesis-unit it is possible to control
the physical properties of each partial to experiment with sound.

Conclusion and methodological reflections

 Over the course of developing the implementation, we have been aiming at a
good balance between the different, but intertwined requirements of this project.
While on the one hand, we had to realize and explain a working prototype; the
framework should be more than a machine for automatic music rendering. To
learn how to reason within such a system, and simultaneously how to construct
it, requires both sensitivity to detail and limitation as well as decisions of how to
structure a general discourse that does not get lost in the immediate needs of
realization. As our discussion of the modeling of a gendhing demonstrated, basic
problems are solved and the framework is suitable for further exploration be-
yond elementary questions. At this point, it may be helpful to reconsider some of
the basic design decisions in VGG, and how they fit in a more general meth-
odological view.
 VGG has two sides: on the one hand, it serves as a generative scheme to play
back pieces that are part of a repertoire. On the other hand, and more impor-
tantly, it is a framework for musicological research. While experimental systems
(Rheinberger 1997) have been in focus mostly within natural sciences, there is
no reason to preclude their application from other sciences, such as anthropol-
ogy.38 We must keep in mind though that such systems do not simply exist in
isolation from research practice – rather they are born of the exigencies of ex-
plicit constraints and actual research questions, and they unfold through the

38 The chapter Algorithms in Anthropology makes an attempt to provide a broader context for this
subject matter.

Listening to Theory

187

process of resolving their ambiguities and problems. Despite a few exceptions,
computer experiments are not yet an established method in ethnomusicology. In
systematic musicology, and especially within cognitive musicology, this is more
common, not least because of the historical importance of computation repre-
senting a model for cognition. On the side of art, the experimental application
and development of computer languages has also become increasingly advanced,
so that musical knowledge has become more clearly intertwined with computer
languages. It is only a matter of time before different music cultures begin to
influence computer music practice.
 So what do we actually investigate when doing computer experiments in
gamelan music? Our work with VGG and Javanese gamelan music has involved
a continual reflection upon the relation between several discourses: the experi-
enced knowledge of musical practice and competence, the emic reflection on the
same, the ethnomusicological discourse, and a system that is capable to serve as
a framework. A constant awareness was needed for the relation between vo-
cabularies inherited from the different terminological cultures that have grown
from their communities of practice.
 We have tried to make clear that such an experimental system should not be
seen as a model of central Javanese gamelan music. Rather, it should be consid-
ered a model of a given understanding of this music that allows us to explicate
its underlying assumptions as well as experiment with their consequences.
Maybe most importantly, this helps us to better understand the possibly unex-
pected dissonance between various suppositions. It cannot and need not be a
replacement of any kind for the practice of performing this music, and obviously
does not serve the same purpose as established means of organizing knowledge
about it. This does not mean though that such as system is disconnected from its
subject matter, since a computer model of our understanding of something may
well turn out to show characteristic constraints and thus to shed light on possible
reconfigurations of knowledge, be it by differentiation or abstraction. Following
Rheinberger, it is relevant to consider that experimental systems necessarily
combine what he calls technical objects (those parts of the system that form the
canon of established techniques) and epistemic things (those which are related to
the shifting, ambiguous concepts under investigation). In VGG, for instance, one
could consider the sample playback system an established technical object, but
not each of the rules that serve to generate the parts. Similarly, the way to repre-
sent knowledge of the current sabet may be considered mature, but the various

 R. Schütz/J. Rohrhuber

188

conditions under which it becomes relevant are subject to investigation. We
should not preclude any reconfiguration of these roles though: under certain
circumstances, the fixed points of yesterday shift in the focus of today’s research
questions. We have tried to balance ‘black-boxing’ with openness, a feeling of a
perspicuous presentation with access on all levels of representation – yet only
experimental practice will show where the most promising constellations are to
be found.
 Let us in the following briefly repeat and summarize a few orientating con-
cepts that we based our decisions on. Literate and interactive programming
paradigms have been mentioned in the introduction already – we wish to be able
to combine knowledge representation and algorithmic model into one single
system that is reconfigurable at runtime. The decision to include both terminol-
ogy and notation established in ongoing practice is born from the necessity to
provide a valid and practical extension to the methods of ethnomusicological
work, and to really ‘make sense’.
 Apart from these general frames of reference, there are more specific design
decisions. Perhaps most important among these is our focus on the high-level
representation of interconnected streams of events. These events are the sites for
inscription of knowledge (or, to be precise, they are the site of the inscription of
an assumption about knowledge). This knowledge is produced in stream nodes,
between which the events flow and incrementally differentiate into parallel
worlds – knowledge is always situated39 both in time and structure. The scheme
that structures these situating processes is what we see in the chain of patterns in
a given system, it is the static representation of a given program.
 In other words, we may treat musical knowledge as situated both within a
specific set of competences and in the context of a given moment. The first may
be thought as an incremental differentiation of individual situated knowledge
from collective knowledge. The second maintains the inherent temporal struc-
ture of musical context. By appropriately interlinking different levels of differ-
entiation, and by injecting various degrees of retention, interaction may happen
both between those levels and different moments in time. Hence, in order to

39 There is a broad discussion of questions on situated knowledge and distributed cognition over
the last decades. From the point of view of theory of science, see for instance Haraway (1988). On
situated cognition Clark/Dave (1998) is a relevant introduction. Concerning computational sys-
tems, one may want to confer Clancey (1997) or Petric et al. (2001).

Listening to Theory

189

situate knowledge, one does not have to start with the assumption of an individ-
ual subject who is the bearer of knowledge. Neither do we have to assume one
global archive that is accessible by such subjects. One may imagine the eventual
sound synthesis to correspond to the bodily actions of each player, but the
agency involved in the decisions required to perform these actions is distributed
over both various degrees of collectiveness and temporal depth.
 Thus, reasoning about the flow of causation in the system, we do not localize
the agents of decisions in a preconceived group of entities that are to represent
each individual player in the ensemble. Rather, the agents (which may be
thought to coincide with competences) may have their place at any point in the
field between individual and collective. This takes into account a view that con-
ceptualizes cognition and action to be intertwined not only in each individual,
but also in a collective situation: in this way, we assume various degrees of situ-
ated and distributed cognition, as to allow the researcher model subjective situa-
tions without binding action and competence to a subjectivist view of musical
agency (see fig. 19).40
 We would like to emphasize that such a system exposes only an extremely
simplified silhouette of how a piece of music might develop in actual perform-
ance. On that account, notation is drawn between the extremes of writing out
sequences of known variations, and narrowing the conditions under which they
might occur, and the other extreme of attempting to find general underlying
principles of their generation. Accordingly, the coarse rhythmical framework of
binary subdivision might still underlie the musical processes leading to collec-
tive agogic fluctuations so characteristic of Javanese gamelan performances.
Variability might still be considered as choice among given patterns, the princi-
ples of which we aim to understand. This last point may be considered particu-
larly controversial. For one we would like to admit that implementing a model of
musical inventiveness within the idiom of Javanese gamelan music appeared too
ambitious a goal to aspire to. Yet it also seems that musical creativity in Java
tends to express itself in an active command of many variants learned from dif-
ferent persons and traditions rather than frequent extemporization of previously
unheard patterns. And maybe most importantly, while VGG aims to develop into

40 It would, for instance, be possible to modify the current implementation as to introduce
computational agents that make goal-driven decisions. But one would not necessarily have to
assume that these goals are primarily individual and their collectiveness only secondary.

 R. Schütz/J. Rohrhuber

190

a generative model of Javanese gamelan music, the goal is nevertheless primar-
ily descriptive. The model is a mode of expressing our understanding, and the
resulting sound we see primarily as a tool to test our assumptions.

Figure 19: Degrees of differentiation and collectiveness in situating assumptions
about knowledge and competence in an example system. While all streams are
independent, they may share generative principles. Other constellations may reor-
der this structure according to different assumptions.

instrumentation,
timing

balungan, form, pathet etc.

part generation

collective-
ness

differen-
tiation

inter-
action

 This all said, it remains one of the most essential aspects of a system like this
that all reasoning with and about it is contextualized in the situation of listening
to a complete ensemble in which all acoustic aspects form a complex experi-
ence; interacting with the system, modifying the system and listening to the sys-
tem move close to each other, and the musicological knowledge laid down in the
process is kept active and integrated in context. For instance, while the example
implementation discussed here is still elementary, already all parts are connected
by interaction and general rules. Consequently, listening to the system, one
learns to relate what one knows about its inner logic to what one knows about
gamelan performance. This process will always be productive especially by its
inherent difference; it is not mainly similarity of a model that leads to insight.
Simulation therefore need not be in the center of the epistemic process, but
rather this multifaceted involvement in the act of listening, construction, and
thought. It is precisely such a practice of experimental listening that makes pos-
ing questions to and by the virtual gamelan a captivating and fruitful activity.

Listening to Theory

191

References Cited

BRINNER, Benjamin E.
 1995 Knowing Music, Making Music. Javanese Gamelan and the Theory

of Musical Competence and Interaction. Chicago: University of Chi-
cago Press. (Chicago studies in ethnomusicology).

 2008 Music in Central Java. Experiencing Music, Expressing Culture.
New York: Oxford University Press. (Global music series)

BULLEN, Geroge W.
 1877 "The galin-paris-cheve method of teaching considered as a basis of

musical education". Proceedings of the Musical Association, 4: 68–
93.

CLANCEY, William J.
 1997 Situated Cognition: On Human Knowledge and Computer

Representations. Cambridge, U.K. and New York, USA: Cambridge
University Press.

CLARK, Andy / CHALMERS David J.
 1998 "The extended mind". Analysis, 58(1): 7–19.
DJUMADI
 1976-83 Titi Laras Rebaban ('rebaban notation'). 3 vols., Surakarta: Akademi

Seni Karawitan Indonesia.
 1982 Tuntunan belajar rebab ('a guide to studying rebab'). Surakarta:

Sekolah Menengah Indonesia.
L’ECUYER, Pierre
 1996 “Maximally equidistributed combined tausworthe generators".

Mathematics of Computation, (65): 203–213.
HARAWAY, Donna
 1988 "Situated knowledges: The science question in feminism and the

privilege of partial perspective". Feminist Studies: 14(3): 575–599.
HEINS, Ernst L.
 1970 "Cueing the gamelan in Javanese wayang performance". Indonesia,

9: 101–127.
IVERSON, Kenneth E.
 1979 Notation as a tool of thought (ACM Turing award lecture). Detroit:

Communications of the ACM, 23(8).

 R. Schütz/J. Rohrhuber

192

KNUTH, Donald E.
 1992 Literate Programming. Stanford (California): Center for the Study of

Language and Information. (CSLI Lecture Notes, 27).
MEYER, Bertrand
 2000 Object-oriented Software Construction. New York: Prentice-Hall.
KLERER, Melvin / REINFELDS, Juris
 1968 "Interactive Systems for Experimental Applied Mathematics". Pro-

ceedings of the ACM Symposium held in Washington DC August
1967. New York: Academic Press.

KUNST, Jaap
 31973 Music in Java. Its History, its Theory, and its Technique. 2 vols. Ed-

ited by E. L. Heins. The Hague: M. Nijhoff.
PERLMAN, Marc
 2004 Unplayed Melodies. Javanese Gamelan and the Genesis of Music

Theory. Berkley/Los Angeles/London: University of California
Press.

PETRIC, Mirko / TOMIC-KOLUDROVIC, Inga / MITROVIC, Ivica
 2001 "A missing link: The role of semiotics in multiagent environments".

Proceedings Cosign 2001. 1st Conference on Computational Semi-
otics for Games and New Media. Amsterdam: Stichting Centrum
voor Wiskunde en Informatica: 108–113.
http://www.cosignconference.org/downloads/papers/petric_et_al_cos
ign_2001.pdf (retrieved June 30th, 2008).

PICKVANCE, Richard
 2005 A Gamelan Manual: A Player's Guide to the Central Javanese Gam-

elan. London: Jaman Mas Books, 2005.
ROHRHUBER, Julian / DE CAMPO, Alberto
 2008 "Just in time programming". In: Collins, N., Wilson, S., and Cottle,

D. (eds.): The SuperCollider Book. Cambridge (Massachusetts): MIT
Press. (forthcoming).

ROHRHUBER, Julian / DE CAMPO, Alberto / WIESER, Renate
 2005 "Algorithms today - notes on language design for just in time pro-

gramming". In: Proceedings of the 2005 International Computer
Music Conference: 455–458. Barcelona: ICMC.

Listening to Theory

193

RHEINBERGER, Hans-Jörg
 1997 Toward a History of Epistemic Things: Synthesizing Proteins in the

Test Tube. Stanford (California): Stanford University Press. (Writing
Science).

SIGIT ASTONO
 1990 Pengenalan terhadap cengkok céngkok siteran ('Introduction to siter

céngkok'). Surakarta: Sekolah Tinggi Seni Indonesia Surakarta.
SORRELL, Neil
 22000 A Guide to the Gamelan. Ithaca (New York): Cornell University.

(Society for Asian Music).
SUMARSAM
 1975 “Inner Melody in Javanese Gamelan Music”, Asian Music, 7(1):3–

13.
WARSADININGRAT
 1987 "Wédha pradangga" ('Sacred knowledge about Gamelan music'). In:

Becker. J., Feinstein, A. (eds.): Karawitan. Source Readings in
Javanese Gamelan and Vocal Music, vol. 1: 1–170. Ann Arbor
(Michigan). (Translated from Javanese by S.P. Walton).

	01_Titelei.pdf
	Bibliografische Information der Deutschen Bibliothek

	02_Inhaltsverzeichnis.pdf
	11_Schütz_Rohrhuber_ok.pdf
	Rainer Schütz, Julian Rohrhuber
	Listening to Theory. An Introduction to the Virtual Gamelan Graz Framework
	Introduction
	Notation and knowledge representation
	 Musical notation
	 From notes to events: situating assumptions on musical knowledge
	SuperCollider lingo
	 Dictionaries and event-streams
	 Classes and objects, patterns and streams
	 Tags
	Modeling a gendhing
	 Performance flow
	 Irama and speed
	 Pathet and tonality
	 Part generation and the rewrite system
	 Order in matching events
	 Broadening scope with variables
	 Disambiguation by melodic context
	 Complementing notation by tags
	 Variability, disambiguation and randomness
	 Pattern-components, variables and data-maintenance
	 Pattern matching and interaction
	 Micro timing: interaction and jitter
	 Audio-synthesis
	Recapitulation: a walkthrough
	Conclusion and methodological reflections
	References Cited

